You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
By a happy coincidence, the completion of this text coincided with the 200th anniversary of the discovery of gadolinite, the mineral with which the lanthanide story begins. For a group of elements which occur in only trace amounts biologically, and which have no known metabolic role, the lanthanides have spawned a surprisingly large biochemicalliterature. Se rious interest in the biochemical properties ofthese elements can be traced to concerns about the safety of radioactive lanthanides toward the end of World War 11. As recent events at Chernobyl indicate, this concern re mains topical. However, the literature on lanthanide biochemistry pre dates the atomic era, beginning with sporadic, me...
Chapters in this book review the remarkable advances in the field of zinc biology over the last decade. Zinc is essential for life, in particular for growth and development, through its role in hundreds of zinc enzymes and thousands of zinc proteins. Its catalytic, structural, and regulatory functions in these proteins impact metabolism, gene expression, and signal transduction, including neurotransmission. Among the micronutrients, zinc may rank with iron as to its importance for public health. The topics covered range from single molecules to cells and to whole organisms: the chemistry, design, and application of fluorophores for the determination of cellular zinc; the role of zinc in proliferation, differentiation, and apoptosis of cells; proteins that transport, sense, and distribute zinc and together form a cellular homeostatic system; the coordination chemistry of zinc in metalloproteins; the role of zinc in the brain as a neuromodulator/transmitter; the dependence of the immune system on zinc; zinc homeostasis in the whole human body.
Presents the physical background of ligand binding and instructs on how experiments should be designed and analyzed Reversible Ligand Binding: Theory and Experiment discusses the physical background of protein-ligand interactions—providing a comprehensive view of the various biochemical considerations that govern reversible, as well as irreversible, ligand binding. Special consideration is devoted to enzymology, a field usually treated separately from ligand binding, but actually governed by identical thermodynamic relationships. Attention is given to the design of the experiment, which aids in showing clear evidence of biochemical features that may otherwise escape notice. Classical exper...
Macromolecules in the body form noncovalent associations, such as DNA-protein or protein-protein complexes, that control and regulate numerous cellular functions. Understanding how changes in the concentration and conformation of these macromolecules can trigger physiological responses is essential for researchers developing drug therapies to treat
This volume presents a review of the latest numerical techniques used to identify ligand binding and protein complexation sites. It should be noted that there are many other theoretical studies devoted to predicting the activity of specific proteins and that useful protein data can be found in numerous databases. The aim of advanced computational techniques is to identify the active sites in specific proteins and moreover to suggest a generalized mechanism by which such protein-ligand (or protein-protein) interactions can be effected. Developing such tools is not an easy task – it requires extensive expertise in the area of molecular biology as well as a firm grasp of numerical modeling methods. Thus, it is often viewed as a prime candidate for interdisciplinary research.