You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Vibrio are Gram-negative bacteria that naturally inhabit riverine, estuarine and marine aquatic environments. Some Vibrio are known to be capable of causing gastroenteritis, wound infections, cholera and fatal septicemia in severe cases. Over the past decades, research on Vibrio has increased and has caused a great development in our knowledge of these pathogens. Focus of this research includes the discovery of emerging epidemic clones, the traits of new strains, and the occurrence of multidrug resistant strains in the ecology. Moreover, improved understandings of the prevalence, pathogenesis and evolution of Vibrio have revealed the significant role of these pathogens in enhancing disease t...
Background Bacteria use quorum sensing (QS) circuits to coordinate various activities (among which biofilm formation and the expression of virulence factors) based on the presence of signaling molecules. Different families of signal molecules have been identified in Gram positive and Gram negative bacteria (e.g. autoinducer peptides and acyl homoserine lactones). Similarly, different quorum sensing antagonists interfering with these system have been found in nature, promoting a new and promising field of research, quorum sensing interference. One of the most intensively studied applications of quorum sensing interference is its use as an alternative or synergycally with antibiotics to fight ...
Advances in next-generation sequencing technologies (NGS) are revolutionizing the field of food microbiology. Microbial whole genome sequencing (WGS) can provide identification, characterization, and subtyping of pathogens for epidemiological investigations at a level of precision previously not possible. This allows for connections and source attribution to be inferred between related isolates that may be overlooked by traditional techniques. The archiving and global sharing of genome sequences allow for retrospective analysis of virulence genes, antimicrobial resistance markers, mobile genetic elements and other novel genes. The advent of high-throughput 16S rRNA amplicon sequencing, in co...
Actinobacteria are highly diverse prokaryotes that are ubiquitous in soil, freshwater and marine ecosystems. Although various studies have focused on the ecology of this phylum, data are still scant on the diversity, abundance and ecology of actinobacteria endemic to special and extreme environments, such as gut, plant, alkaline saline soil, deep sea sediments, hot springs and other habitats. Actinobacteria are well-known producers of a vast array of secondary metabolites, many of which have useful applications in medicine and agriculture. Furthermore, actinobacteria also have diverse functions in different environments apart from antibiotic production. For example, actinobacteria are report...
Metagenomics: Perspectives, Methods, and Applications provides thorough coverage of the growing field of metagenomics. A diverse range of chapters from international experts offer an introduction to the field and examine methods for metagenomic analysis of microbiota, metagenomic computational tools, and recent metagenomic studies in various environments. The emphasis on application makes this text particularly useful for applied researchers, practitioners, clinicians and students seeking to employ metagenomic approaches to advance knowledge in the biomedical and life sciences. Case-study based application chapters examine topics ranging from viral metagenome profiling, metagenomics in oral ...
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component...
None
None