You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Reliability Modeling with Industry 4.0 explores the emerging theoretical and practical developments in reliability engineering in highly digitized industries, including power, computer systems, railway systems, and robotics. Drawing on leading research from around the globe, as well as the latest in industry practice, this book provides cutting edge advice on how to integrate a fully digitized industry 4.0 system for enhanced reliability and reduced maintenance cost. Technologies such as big data, artificial intelligence, and the industrial internet of things are addressed in the context of reliability engineering, providing practical advice on applications. - Provides innovative reliability modeling tools related to the application of Industry 4.0 technologies - Includes case studies from industries such as rail, energy, and computer systems - Describes techniques for the successful digital transformation of industries for sophisticated reliability systems
This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.
A substantial amount of research has been conducted on consecutive k-out-of-n and related reliability systems over the past four decades. These systems have been used to model various engineering systems such as the microwave stations of telecoms network, oil pipeline systems, and vacuum systems in an electron accelerator. As such, studies of reliability properties of consecutive k-out-of-n structures have attracted significant attention from both theoretical and practical approaches. In the modern era of technology, the redundancies are employed in the various industrial systems to prevent them from failure/sudden failure or to recover from failures. This book is meant to provide knowledge and help engineers and academicians in understanding reliability engineering by using k-out-of-n structures. The material is also targeted at postgraduate or senior undergraduate students pursuing reliability engineering.
Mathematics Applied in Engineering presents a wide array of applied mathematical techniques for an equally wide range of engineering applications, covering areas such as acoustics, system engineering, optimization, mechanical engineering, and reliability engineering. Mathematics acts as a foundation for new advances, as engineering evolves and develops. This book will be of great interest to postgraduate and senior undergraduate students, and researchers, in engineering and mathematics, as well as to engineers, policy makers, and scientists involved in the application of mathematics in engineering. - Covers many mathematical techniques for robotics, computer science, mechanical engineering, HCI and machinability - Describes different algorithms - Explains different modeling techniques and simulations
Promotes better ways to diagnose, maintain, and improve existing systems. Existing reliability evaluation models are examined with respect to today's complicated engineering systems that have hundreds of thousands of integrated component designs.
This book contains extended versions of carefully selected and reviewed papers presented at the Third International Conference on Mathematical Methods in Reliability, held in Norway in 2002. It provides an overview of current research activities in reliability theory. The authors are all leading experts in the field. Readership: Graduate students, academics and professionals in probability & statistics, reliability analysis, survival analysis, industrial engineering, software engineering, operations research and applied mathematics research.
The consecutive-k system was first studied around 1980, and it soon became a very popular subject. The reasons were many-folded, includ ing: 1. The system is simple and natural. So most people can understand it and many can do some analysis. Yet it can grow in many directions and there is no lack of new topics. 2. The system is simple enough to become a prototype for demonstrat ing various ideas related to reliability. For example, the interesting concept of component importance works best with the consecutive-k system. 3. The system is supported by many applications. Twenty years have gone and hundreds of papers have been published on the subject. This seems to be a good time for retrospect and to sort the scattered material into a book. Besides providing our own per spective, the book will also serve as an easy reference to the numerous ramifications of the subject. It is hoped that a summary of work in the current period will become the seed of future break-through.
Scan statistics is currently one of the most active and important areas of research in applied probability and statistics, having applications to a wide variety of fields: archaeology, astronomy, bioinformatics, biosurveillance, molecular biology, genetics, computer science, electrical engineering, geography, material sciences, physics, reconnaissance, reliability and quality control, telecommunication, and epidemiology. Filling a gap in the literature, this self-contained volume brings together a collection of selected chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.
Expert practical and theoretical coverage of runs and scans This volume presents both theoretical and applied aspects of runs and scans, and illustrates their important role in reliability analysis through various applications from science and engineering. Runs and Scans with Applications presents new and exciting content in a systematic and cohesive way in a single comprehensive volume, complete with relevant approximations and explanations of some limit theorems. The authors provide detailed discussions of both classical and current problems, such as: * Sooner and later waiting time * Consecutive systems * Start-up demonstration testing in life-testing experiments * Learning and memory models * "Match" in genetic codes Runs and Scans with Applications offers broad coverage of the subject in the context of reliability and life-testing settings and serves as an authoritative reference for students and professionals alike.