You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book highlights the advancement of 2D materials and their composites for electrochemical water splitting. It explores fundamental aspects such as the structure, synthesis, and chemical diversity of various 2D materials (TMDCs, TMTCs, MXenes, Borophenes, MBenes, Graphene and Graphdiyne) with a viewpoint for water splitting. The book also covers designing strategies to integrate an electrocatalyst for both HER and OER. The book also presents detailed computational insights into electrochemical water splitting. The current state of 2D material-based water splitting technologies, as well as the challenges faced while scaling them up, is addressed. The book also provides a comprehensive look at the integration of 2D materials into water-splitting devices. Additionally, the book offers a broad overview of 2D materials for electrochemical water splitting from a global perspective. This book will serve as a valuable resource for scientists, engineers, research scholars, and graduate students specializing in electrochemical water splitting.
Ongoing concerns regarding greenhouse gas-related environmental effects, energy security, and the rising costs of conventional energy sources has led to sustained interest and growth in solar energy in general, and photovoltaics in particular. Exploring state-of-the-art developments from a practical point of view, Quantum and Nanotechnology for Photovoltaics is the second edition of the book and examines issues in increasing efficiency, decreasing costs, and how these two goals can be achieved in a single photovoltaic device leveraging emergent quantum and nanoscale phenomena. The book provides fundamental background, including new chapters on quantum physics, hot carrier solar cells, lumine...
Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical str...
Final program for the CMOSET 2014 conference
A collection of abstracts for talks presented at the 2014 CMOS Emerging Technologies Research Symposium in Grenoble, France, July 6-8, 2014. The CMOS Emerging Technologies Research Symposium is a research and business event for those who want to discuss and find out about new exciting high tech opportunities. The conference provides researchers, companies and academic institutions with a platform for showcasing their technology, innovations, products and services. By bringing together people from all areas of the high tech arena, we create a stimulating common ground for exploring collaborations and encouraging discussions on emerging technologies.
A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors Titania Thin Films in Biocompatible Materials and Medical Implants Oxide Nanowires for New Chemical Sensor Devices
The scaling of device dimensions with a simultaneous increase in functional density has imposed tremendous challenges for materials, technology, integration and reliability of interconnects. To meet requirements of the ITRS roadmap, new materials are being introduced at a faster pace in all functions of multilevel interconnects. The issues addressed in this book cannot be dispelled as simply selecting a low-k material and integrating it into a copper damascene process. The intricacies of the back end for sub-100nm technology include novel processing of low-k materials, employing pore-sealing techniques and capping layers, introducing advanced dielectric and diffusion barriers, and developing novel integration schemes. This is in addition to concerns of performance, yield, and reliability appropriate to nanoscaled interconnects. Although many challenges continue to impede progress along the ITRS roadmap, the contributions in this book confront them head-on. It provides a scientific understanding of the issues and stimulate new approaches to advanced multilevel interconnects.