Welcome to our book review site www.go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving
  • Language: en
  • Pages: 236

Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving

Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.

Privacy-Respecting Smart Video Surveillance Based on Usage Control Enforcement
  • Language: en
  • Pages: 268

Privacy-Respecting Smart Video Surveillance Based on Usage Control Enforcement

This research introduces a conceptual framework for enforcing privacy-related restrictions in smart video surveillance systems based on danger levels and incident types to be handled. It increases the selectivity of surveillance by restricting data processing to individuals associated to incidents under investigation. Constraints are enforced by usage control, which is instantiated for video surveillance for the first time and enables tailoring such systems to comply with data protection law.

Probabilistic Parametric Curves for Sequence Modeling
  • Language: en
  • Pages: 224

Probabilistic Parametric Curves for Sequence Modeling

This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation.

Facial Texture Super-Resolution by Fitting 3D Face Models
  • Language: en
  • Pages: 232

Facial Texture Super-Resolution by Fitting 3D Face Models

This book proposes to solve the low-resolution (LR) facial analysis problem with 3D face super-resolution (FSR). A complete processing chain is presented towards effective 3D FSR in real world. To deal with the extreme challenges of incorporating 3D modeling under the ill-posed LR condition, a novel workflow coupling automatic localization of 2D facial feature points and 3D shape reconstruction is developed, leading to a robust pipeline for pose-invariant hallucination of the 3D facial texture.

Deep Learning based Vehicle Detection in Aerial Imagery
  • Language: en
  • Pages: 276

Deep Learning based Vehicle Detection in Aerial Imagery

This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced.

Multimodal Panoptic Segmentation of 3D Point Clouds
  • Language: en
  • Pages: 248

Multimodal Panoptic Segmentation of 3D Point Clouds

The understanding and interpretation of complex 3D environments is a key challenge of autonomous driving. Lidar sensors and their recorded point clouds are particularly interesting for this challenge since they provide accurate 3D information about the environment. This work presents a multimodal approach based on deep learning for panoptic segmentation of 3D point clouds. It builds upon and combines the three key aspects multi view architecture, temporal feature fusion, and deep sensor fusion.

Proceedings of the 2022 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory
  • Language: en
  • Pages: 140

Proceedings of the 2022 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

In August 2022, Fraunhofer IOSB and IES of KIT held a joint workshop in a Schwarzwaldhaus near Triberg. Doctoral students presented research reports and discussed various topics like computer vision, optical metrology, network security, usage control, and machine learning. This book compiles the workshop's results and ideas, offering a comprehensive overview of the research program of IES and Fraunhofer IOSB.

Proceedings of the 2019 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory
  • Language: en
  • Pages: 170

Proceedings of the 2019 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

In 2019 fand wieder der jährliche Workshop des Fraunhofer IOSB und des Lehrstuhls für Interaktive Echtzeitsysteme des Karlsruher Insitut für Technologie statt. Die Doktoranden beider Institutionen präsentierten den Fortschritt ihrer Forschung in den Themen Maschinelles Lernen, Machine Vision, Messtechnik, Netzwerksicherheit und Usage Control. Die Ideen dieses Workshops sind in diesem Buch gesammelt in der Form technischer Berichte. - In 2019 again, the annual joint workshop of the Fraunhofer IOSB and the Vision and Fusion Laboratory of the Karlsruhe Institute of Technology took place. The doctoral students of both institutions presented extensive reports on the status of their research and discussed topics ranging from computer vision and optical metrology to network security, usage control and machine learning. The results and ideas presented at the workshop are collected in this book in the form of technical reports.

Adaptive State × Time Lattices: A Contribution to Mobile Robot Motion Planning in Unstructured Dynamic Environments
  • Language: en
  • Pages: 282

Adaptive State × Time Lattices: A Contribution to Mobile Robot Motion Planning in Unstructured Dynamic Environments

Mobile robot motion planning in unstructured dynamic environments is a challenging task. Thus, often suboptimal methods are employed which perform global path planning and local obstacle avoidance separately. This work introduces a holistic planning algorithm which is based on the concept of state.

Proceedings of the 2020 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory
  • Language: en
  • Pages: 192

Proceedings of the 2020 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

In 2020 fand der jährliche Workshop des Faunhofer IOSB und the Lehrstuhls für interaktive Echtzeitsysteme statt. Vom 27. bis zum 31. Juli trugen die Doktorranden der beiden Institute über den Stand ihrer Forschung vor in Themen wie KI, maschinellen Lernen, computer vision, usage control, Metrologie vor. Die Ergebnisse dieser Vorträge sind in diesem Band als technische Berichte gesammelt. - In 2020, the annual joint workshop of the Fraunhofer IOSB and the Vision and Fusion Laboratory of the KIT was hosted at the IOSB in Karlsruhe. For a week from the 27th to the 31st July the doctoral students of both institutions presented extensive reports on the status of their research and discussed topics ranging from computer vision and optical metrology to network security, usage control and machine learning. The results and ideas presented at the workshop are collected in this book.