You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top rese...
The papers showcase the breadth of discrete geometry through many new methods and results in a variety of topics. Also included are survey articles on some important areas of active research. This volume is aimed at researchers in discrete and convex geometry and researchers who work with abstract polytopes or string C C-groups. It is also aimed at early career mathematicians, including graduate students and postdoctoral fellows, to give them a glimpse of the variety and beauty of these research areas. Topics covered in this volume include: the combinatorics, geometry, and symmetries of convex polytopes; tilings; discrete point sets; the combinatorics of Eulerian posets and interval posets; symmetries of surfaces and maps on surfaces; self-dual polytopes; string C C-groups; hypertopes; and graph coloring.
In the tradition of EuroComb'01 (Barcelona), Eurocomb'03 (Prague), EuroComb'05 (Berlin), Eurocomb'07 (Seville), Eurocomb'09 (Bordeaux), and Eurocomb'11 (Budapest), this volume covers recent advances in combinatorics and graph theory including applications in other areas of mathematics, computer science and engineering. Topics include, but are not limited to: Algebraic combinatorics, combinatorial geometry, combinatorial number theory, combinatorial optimization, designs and configurations, enumerative combinatorics, extremal combinatorics, ordered sets, random methods, topological combinatorics.
This book constitutes the thoroughly refereed post-proceedings of the Japanese Conference on Discrete Computational Geometry, JCDCG 2002, held in Tokyo, Japan, in December 2002. The 29 revised full papers presented were carefully selected during two rounds of reviewing and improvement. All current issues in discrete algorithmic geometry are addressed.
This book contains twenty-two papers presented at the International Conference in Combinatorics, held in Jerusalem in May 1993. The papers describe some of the latest developments in algebraic combinatorics, enumeration, graph and hypergraph theory, combinatorial geometry, and geometry of polytopes and arrangements. The papers are accessible to specialists as well as nonspecialists.
Active engagement is the key to learning. You want your students doing something that stimulates them to ask questions and creates a need to know. Teaching Mathematics Through Games presents a variety of classroom-tested exercises and activities that provoke the active learning and curiosity that you hope to promote. These games run the gamut from well-known favorites like SET and Settlers of Catan to original games involving simulating structural inequality in New York or playing Battleship with functions. The book contains activities suitable for a wide variety of college mathematics courses, including general education courses, math for elementary education, probability, calculus, linear algebra, history of math, and proof-based mathematics. Some chapter activities are short term, such as a drop-in lesson for a day, and some are longer, including semester-long projects. All have been tested, refined, and include extensive implementation notes.
The articles that comprise this distinguished annual volume for the Advances in Mechanics and Mathematics series have been written in honor of Gilbert Strang, a world renowned mathematician and exceptional person. Written by leading experts in complementarity, duality, global optimization, and quantum computations, this collection reveals the beauty of these mathematical disciplines and investigates recent developments in global optimization, nonconvex and nonsmooth analysis, nonlinear programming, theoretical and engineering mechanics, large scale computation, quantum algorithms and computation, and information theory.
None