You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biophysics is an intradisciplinary as well as an emerging subject in the field of Biological Science in the recent years.It is a hybrid science which deals with Physics ,Chemistry and Biology.
Biophysics is the science of physical principles underlying the "phenomenon of life" on all levels of organization. This book begins by explaining molecular and ionic interactions, movements, excitation and energy transfer, and the self-organization of supramolecular structures. Then the biological organism is introduced as a non-equilibrium system. Finally, system analyses are discussed as well as environmental biophysics, ecological interactions, growth, differentiation, and evolution. A growing number of applications in biotechnology are based on these biophysical concepts.
An introduction to the physics of living organisms The field of biophysics employs the principles of physics to study biological systems, and introduces the concept of the living state. It is a multidisciplinary approach to the study of the living state combining physics, biochemistry, molecular and cell biology, medicine and engineering. The physics of macromolecules and macromolecular assemblies is a particularly important aspect of this broader field. Biophysics: Physical Processes Underlying the living state offers an introduction to the general principles of the living state and their biological applications. Beginning with an historical overview of fundamental scientific theories and f...
Biophysics is an evolving, multidisciplinary subject which applies physics to biological systems and promotes an understanding of their physical properties and behaviour. Biophysics: An Introduction, is a concise balanced introduction to this subject. Written in an accessible and readable style, the book takes a fresh, modern approach with the author successfully combining key concepts and theory with relevant applications and examples drawn from the field as a whole. Beginning with a brief introduction to the origins of biophysics, the book takes the reader through successive levels of complexity, from atoms to molecules, structures, systems and ultimately to the behaviour of organisms. The...
Technical advancements are basic elements in our life. In biophysical studies, new applications and improvements in well-established techniques are being implemented every day. This book deals with advancements produced not only from a technical point of view, but also from new approaches that are being taken in the study of biophysical samples, such as nanotechniques or single-cell measurements. This book constitutes a privileged observatory for reviewing novel applications of biophysical techniques that can help the reader enter an area where the technology is progressing quickly and where a comprehensive explanation is not always to be found.
Biophysics is a science that comprises theoretical plotting and models based on contemporary physicochemical conceptions. They mirror physical specificity of the molecular organization and elementary processes in living organisms, which in their turn form the molecular basis of biological phenomena. Presentation of a complete course in biophysics requires vast biological material as well as additional involvement of state-of-the-art concepts in physics, chemistry and mathematics. This is essential for the students to "perceive" the specific nature and peculiarity of molecular biological processes and see how this specificity is displayed in biological systems. This is the essence of the up-to-date biophysical approach to the analysis of biological processes. Fundamentals of Biophysics offers a complete, thorough coverage of the material in a straightforward and no-nonsense format, offering a new and unique approach to the material that presents the appropriate topics without extraneous and unneeded filler material.
This comprehensive and extensively classroom-tested biophysics textbook is a complete introduction to the physical principles underlying biological processes and their applications to the life sciences and medicine. The foundations of natural processes are placed on a firm footing before showing how their consequences can be explored in a wide range of biosystems. The goal is to develop the readers’ intuition, understanding, and facility for creative analysis that are frequently required to grapple with problems involving complex living organisms. Topics cover all scales, encompassing the application of statics, fluid dynamics, acoustics, electromagnetism, light, radiation physics, thermod...
Provides an introduction to the structure and function of biomolecules --- especially proteins --- and the physical tools used to investigate them The discussion concentrates on physical tools and properties, emphasizing techniques that are contributing to new developments and avoiding those that are already well established and whose results have already been exploited fully New tools appear regularly - synchrotron radiation, proton radiology, holography, optical tweezers, and muon radiography, for example, have all been used to open new areas of understanding
Molecular biology has come to dominate our perceptions of life, health and disease. In the decades following World War II, the Medical Research Council Laboratory of Molecular Biology at Cambridge was a world-renowned centre of this emerging discipline. It was here that Crick and Watson, Kendrew and Perutz, Sanger and Brenner pursued their celebrated investigations. Soraya de Chadarevian's important study was the first to examine the creation and expansion of molecular biology through the prism of this remarkable institution. Firmly placing the history of the laboratory in its broader institutional and scientific context, she shows how molecular biology was built at the lab bench and through the wide circulation of tools, models and researchers, as well as in governmental committees, international exhibitions and television studios. Designs for Life is a major contribution both to the history of molecular biology, and to the history of science and technology in post-war Britain.