You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Vols. for 1977- consist of two parts: Chemistry, biological sciences, engineering sciences, metallurgy and materials science (issued in the spring); and Physics, electronics, mathematics, geosciences (issued in the fall).
Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applications. More than 135 figures supplement the text.Features theory, techniques, and applicationsPresents alternative theoretical approaches including multiresolution analysis, splines, minimum entropy, and fractal aspectsContributors cover a broad range of approaches and applications
Advanced undergraduate and beginning graduate students, faculty, researchers and practitioners in signal processing, telecommunications, and computer science, and applied mathematics. It assumes a background of Fourier series and transforms and of linear algebra and matrix methods. This primer presents a well balanced blend of the mathematical theory underlying wavelet techniques and a discussion that gives insight into why wavelets are successful in signal analysis, compression, dection, numerical analysis, and a wide variety of other theoretical and practical applications. It fills a gap in the existing wavelet literature with its unified view of expansions of signals into bases and frames, as well as the use of filter banks as descriptions and algorithms.
This meticulously edited selection of papers comes out of the Ninth International Symposium on Approximation Theory held in Nashville, Tennessee, in January, 1998. Each volume contains several invited survey papers written by experts in the field, along with contributed research papers. This book should be of great interest to mathematicians, engineers, and computer scientists working in approximation theory, wavelets, computer-aided geometric design (CAGD), and numerical analysis. Among the topics included in the books are the following: adaptive approximation approximation by harmonic functions approximation by radial basis functions approximation by ridge functions approximation in the complex plane Bernstein polynomials bivariate splines constructions of multiresolution analyses convex approximation frames and frame bases Fourier methods generalized moduli of smoothness interpolation and approximation by splines on triangulations multiwavelet bases neural networks nonlinear approximation quadrature and cubature rational approximation refinable functions subdivision schemes thin plate splines wavelets and wavelet systems
Contains research articles on the mathematics and applications of control theory and on those parts of optimization theory concerned with the dynamics of deterministic or stochastic systems in continuous or discrete time or otherwise dealing with differential equations, dynamics, infinite-dimensional spaces, or fundamental issues in variational analysis and geometry.