You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Praise for the First Edition "... complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." —Zentralblatt MATH A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining ext...
Computational complexity theory is the study of the quantitative laws that govern computing. This book contains the proceedings of the AMS Short Course on Computational Complexity Theory, held at the Joint Mathematics Meetings in Atlanta in January 1988.
This volume presents four machine-independent theories of computational complexity, which have been chosen for their intrinsic importance and practical relevance. The book includes a wealth of results - classical, recent, and others which have not been published before.In developing the mathematics underlying the size, dynamic and structural complexity measures, various connections with mathematical logic, constructive topology, probability and programming theories are established. The facts are presented in detail. Extensive examples are provided, to help clarify notions and constructions. The lists of exercises and problems include routine exercises, interesting results, as well as some open problems.
Computational Complexity Theory is the study of how much of a given resource is required to perform the computations that interest us the most. Four decades of fruitful research have produced a rich and subtle theory of the relationship between different resource measures and problems. At the core of the theory are some of the most alluring open problems in mathematics. This book presents three weeks of lectures from the IAS/Park City Mathematics Institute Summer School on computational complexity. The first week gives a general introduction to the field, including descriptions of the basic mo.
There has been a common perception that computational complexity is a theory of "bad news" because its most typical results assert that various real-world and innocent-looking tasks are infeasible. In fact, "bad news" is a relative term, and, indeed, in some situations (e.g., in cryptography), we want an adversary to not be able to perform a certain task. However, a "bad news" result does not automatically become useful in such a scenario. For this to happen, its hardness features have to be quantitatively evaluated and shown to manifest extensively.The book undertakes a quantitative analysis of some of the major results in complexity that regard either classes of problems or individual conc...
This textbook is uniquely written with dual purpose. It cover cores material in the foundations of computing for graduate students in computer science and also provides an introduction to some more advanced topics for those intending further study in the area. This innovative text focuses primarily on computational complexity theory: the classification of computational problems in terms of their inherent complexity. The book contains an invaluable collection of lectures for first-year graduates on the theory of computation. Topics and features include more than 40 lectures for first year graduate students, and a dozen homework sets and exercises.
This book is based on the author's Ph.D. thesis which was selected as the winning thesis of the 1999 ACM Doctoral Dissertation Competition. Dieter van Melkebeek did his Ph.D. work at the University of Chicago with Lance Fortnow as thesis advisor. This work studies some central issues in computational complexity: the relative power of time, space, and randomness in computing and verification. The author develops techniques for separating complexity classes by isolating structural differences between their complete problems. He presents several approaches based on such diverse concepts as density, redundancy, and frequency of occurrence.
The first unified introduction and reference for the field of computational complexity. Virtually non-existent only 25 years ago, computational complexity has expanded tremendously and now comprises a major part of the researh activity in theoretical science.
. . . that is what learning is. You suddenly understand something you've un derstood all your life, but in a new way. Various transforms have been widely used in diverse applications of science, engineering and technology. New transforms are emerging to solve many problems, which may have been left unsolved in the past, or newly created by modern science or technologies. Various meth ods have been continuously reported to improve the implementation of these transforms. Early developments of fast algorithms for discrete transforms have significantly stimulated the advance of digital signal processing technologies. More than 40 years after fast Fourier transform algorithms became known, severa...