You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The 78 authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements.
Emotional AI and Human-AI Interactions in Social Networking makes readers aware of recent progress in this integrated discipline. Filling the existing vacuum in research in artificial intelligence with the application of social science, this book provides in-depth knowledge of human-AI interactions with social networking and increased use of the internet. Chapters integrating Emotional Artificial Intelligence, examining behavioral interventions, compassion, education, and healthcare, as well as social cognitive networking, including social brain networks, play a pivotal role in enhancing interdisciplinary studies in the field of social neuroscience and Emotional AI. This volume is a must for those wanting to dive into this exciting field of social neuroscience AI. - Serves as a guide on social cognitive neuroscience for mental health and emotional AI for behavioral interventions - Details various technologies of human-AI interactions with social networking - Includes sections on emotional AI in behavioral interventions, compassion, education and healthcare
Digital technology has enabled a number of internet-enabled devices that generate huge volumes of data from different systems. This large amount of heterogeneous data requires efficient data collection, processing, and analytical methods. Deep Learning is one of the latest efficient and feasible solutions that enable smart devices to function independently with a decision-making support system. Convergence of Deep Learning and Internet of Things: Computing and Technology contributes to technology and methodology perspectives in the incorporation of deep learning approaches in solving a wide range of issues in the IoT domain to identify, optimize, predict, forecast, and control emerging IoT systems. Covering topics such as data quality, edge computing, and attach detection and prediction, this premier reference source is a comprehensive resource for electricians, communications specialists, mechanical engineers, civil engineers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
This book presents high-quality peer-reviewed papers from the International Conference on Advanced Communication and Computational Technology (ICACCT) 2019 held at the National Institute of Technology, Kurukshetra, India. The contents are broadly divided into four parts: (i) Advanced Computing, (ii) Communication and Networking, (iii) VLSI and Embedded Systems, and (iv) Optimization Techniques.The major focus is on emerging computing technologies and their applications in the domain of communication and networking. The book will prove useful for engineers and researchers working on physical, data link and transport layers of communication protocols. Also, this will be useful for industry professionals interested in manufacturing of communication devices, modems, routers etc. with enhanced computational and data handling capacities.
This book presents high-quality, original contributions (both theoretical and experimental) on software engineering, cloud computing, computer networks & internet technologies, artificial intelligence, information security, and database and distributed computing. It gathers papers presented at ICRIC 2019, the 2nd International Conference on Recent Innovations in Computing, which was held in Jammu, India, in March 2019. This conference series represents a targeted response to the growing need for research that reports on and assesses the practical implications of IoT and network technologies, AI and machine learning, cloud-based e-Learning and big data, security and privacy, image processing and computer vision, and next-generation computing technologies.
This book addresses the challenges for developing and emerging trends in Internet-of-Things (IoT) for smart agriculture platforms. It also describes data analytics & machine learning, cloud architecture, automation & robotics and aims to overcome existing barriers for smart agriculture with commercial viability. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. The book explores a range of applications including intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems. This volume will be helpful for engineering and technology experts and researchers, as well as for policy-makers.
Exploring the Metaverse: Challenges and Applications explores the various applications and challenges facing the metaverse, from privacy and security concerns to questions about the economy and ethical considerations. Drawing on insights from experts in technology, ethics, and economics, the book's authors provide a comprehensive overview of the metaverse and its potential implications. Through a series of engaging essays and thought-provoking case studies, they examine the complex issues facing the metaverse, such as the role of virtual identity, the impact on social interactions, and the potential for addiction. Finally, they explore potential solutions to these challenges, from technologi...
Clustering, a foundational technique in data analytics, finds diverse applications across scientific, technical, and business domains. Within the theme of “Data Clustering,” this book assumes substantial importance due to its indispensable clustering role in various contexts. As the era of online media facilitates the rapid generation of large datasets, clustering emerges as a pivotal player in data mining and machine learning. At its core, clustering seeks to unveil heterogeneous groups within unlabeled data, representing a crucial unsupervised task in machine learning. The objective is to automatically assign labels to each unlabeled datum with minimal human intervention. Analyzing thi...
Advances in Computational Techniques for Biomedical Image Analysis: Methods and Applications focuses on post-acquisition challenges such as image enhancement, detection of edges and objects, analysis of shape, quantification of texture and sharpness, and pattern analysis. It discusses the archiving and transfer of images, presents a selection of techniques for the enhancement of contrast and edges, for noise reduction and for edge-preserving smoothing. It examines various feature detection and segmentation techniques, together with methods for computing a registration or normalization transformation. Advances in Computational Techniques for Biomedical Image Analysis: Method and Applications ...
Increase in consumer awareness of nutritional habits has placed automatic food analysis in the spotlight in recent years. However, food-logging is cumbersome and requires sufficient knowledge of the food item consumed. Additionally, keeping track of every meal can become a tedious task. Accurately documenting dietary caloric intake is crucial to manage weight loss, but also presents challenges because most of the current methods for dietary assessment must rely on memory to recall foods eaten. Food understanding from digital media has become a challenge with important applications in many different domains. Substantial research has demonstrated that digital imaging accurately estimates dieta...