Welcome to our book review site www.go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Differential Forms and Applications
  • Language: en
  • Pages: 124

Differential Forms and Applications

This is a free translation of a set of notes published originally in Portuguese in 1971. They were translated for a course in the College of Differential Geome try, ICTP, Trieste, 1989. In the English translation we omitted a chapter on the Frobenius theorem and an appendix on the nonexistence of a complete hyperbolic plane in euclidean 3-space (Hilbert's theorem). For the present edition, we introduced a chapter on line integrals. In Chapter 1 we introduce the differential forms in Rn. We only assume an elementary knowledge of calculus, and the chapter can be used as a basis for a course on differential forms for "users" of Mathematics. In Chapter 2 we start integrating differential forms o...

Differential Forms with Applications to the Physical Sciences
  • Language: en
  • Pages: 226

Differential Forms with Applications to the Physical Sciences

"To the reader who wishes to obtain a bird's-eye view of the theory of differential forms with applications to other branches of pure mathematics, applied mathematic and physics, I can recommend no better book." — T. J. Willmore, London Mathematical Society Journal. This excellent text introduces the use of exterior differential forms as a powerful tool in the analysis of a variety of mathematical problems in the physical and engineering sciences. Requiring familiarity with several variable calculus and some knowledge of linear algebra and set theory, it is directed primarily to engineers and physical scientists, but it has also been used successfully to introduce modern differential geome...

Differential Forms
  • Language: en
  • Pages: 158

Differential Forms

A working knowledge of differential forms so strongly illuminates the calculus and its developments that it ought not be too long delayed in the curriculum. On the other hand, the systematic treatment of differential forms requires an apparatus of topology and algebra which is heavy for beginning undergraduates. Several texts on advanced calculus using differential forms have appeared in recent years. We may cite as representative of the variety of approaches the books of Fleming [2], (1) Nickerson-Spencer-Steenrod [3], and Spivak [6]. . Despite their accommodation to the innocence of their readers, these texts cannot lighten the burden of apparatus exactly because they offer a more or less ...

Differential Forms and Connections
  • Language: en
  • Pages: 268

Differential Forms and Connections

This 1994 book introduces the tools of modern differential geometry, exterior calculus, manifolds, vector bundles and connections, to advanced undergraduate and beginning graduate students in mathematics, physics and engineering. The book covers both classical surface theory and the modern theory of connections and curvature, and includes a chapter on applications to theoretical physics. The only prerequisites are multivariate calculus and linear algebra; no knowledge of topology is assumed. The powerful and concise calculus of differential forms is used throughout. Through the use of numerous concrete examples, the author develops computational skills in the familiar Euclidean context before exposing the reader to the more abstract setting of manifolds. There are nearly 200 exercises, making the book ideal for both classroom use and self-study.

A Visual Introduction to Differential Forms and Calculus on Manifolds
  • Language: en
  • Pages: 470

A Visual Introduction to Differential Forms and Calculus on Manifolds

  • Type: Book
  • -
  • Published: 2018-11-03
  • -
  • Publisher: Springer

This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

Manifolds, Vector Fields, and Differential Forms
  • Language: en
  • Pages: 349

Manifolds, Vector Fields, and Differential Forms

This textbook serves as an introduction to modern differential geometry at a level accessible to advanced undergraduate and master's students. It places special emphasis on motivation and understanding, while developing a solid intuition for the more abstract concepts. In contrast to graduate level references, the text relies on a minimal set of prerequisites: a solid grounding in linear algebra and multivariable calculus, and ideally a course on ordinary differential equations. Manifolds are introduced intrinsically in terms of coordinate patches glued by transition functions. The theory is presented as a natural continuation of multivariable calculus; the role of point-set topology is kept to a minimum. Questions sprinkled throughout the text engage students in active learning, and encourage classroom participation. Answers to these questions are provided at the end of the book, thus making it ideal for independent study. Material is further reinforced with homework problems ranging from straightforward to challenging. The book contains more material than can be covered in a single semester, and detailed suggestions for instructors are provided in the Preface.

Global Analysis
  • Language: en
  • Pages: 362

Global Analysis

The final third of the book applies the mathematical ideas to important areas of physics: Hamiltonian mechanics, statistical mechanics, and electrodynamics." "There are many classroom-tested exercises and examples with excellent figures throughout. The book is ideal as a text for a first course in differential geometry, suitable for advanced undergraduates or graduate students in mathematics or physics."--BOOK JACKET.

Geometry of Differential Forms
  • Language: en
  • Pages: 356

Geometry of Differential Forms

This work introduces the theory and practice of differential forms on manifolds and overviews the concept of differentiable manifolds, assuming a minimum of knowledge in linear algebra, calculus, and elementary topology. Chapters cover manifolds, differential forms, the de Rham theorem, Laplacian and harmonic forms, and vector and fiber bundles and characteristic classes. The text includes exercises and answers. First published in Japanese by Iwanami Shoten, Publishers, Tokyo, 1997, 1998. c. Book News Inc.

Differential Forms in Mathematical Physics
  • Language: en
  • Pages: 504

Differential Forms in Mathematical Physics

  • Type: Book
  • -
  • Published: 2009-06-17
  • -
  • Publisher: Elsevier

Differential Forms in Mathematical Physics

Integral Theorems for Functions and Differential Forms in C(m)
  • Language: en
  • Pages: 165

Integral Theorems for Functions and Differential Forms in C(m)

  • Type: Book
  • -
  • Published: 2001-08-03
  • -
  • Publisher: CRC Press

The theory of holomorphic functions of several complex variables emerged from the attempt to generalize the theory in one variable to the multidimensional situation. Research in this area has led to the discovery of many sophisticated facts, structures, ideas, relations, and applications. This deepening of knowledge, however, has also revealed more