You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evolutionary Computation (EC) field characterized by the use of explicit probability distributions in optimization. Contrarily to other EC techniques such as the broadly known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators are substituted by the sampling of a distribution previously learnt from the selected individuals. EDAs have experienced a high development that has transformed them into an established discipline within the EC field. This book attracts the interest of new researchers in the EC field as well as in other optimization disciplines, and that it becomes a reference for all of us working on this topic. The twelve chapters of this book can be divided into those that endeavor to set a sound theoretical basis for EDAs, those that broaden the methodology of EDAs and finally those that have an applied objective.
The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.
One of the main difficulties of applying an evolutionary algorithm (or, as a matter of fact, any heuristic method) to a given problem is to decide on an appropriate set of parameter values. Typically these are specified before the algorithm is run and include population size, selection rate, operator probabilities, not to mention the representation and the operators themselves. This book gives the reader a solid perspective on the different approaches that have been proposed to automate control of these parameters as well as understanding their interactions. The book covers a broad area of evolutionary computation, including genetic algorithms, evolution strategies, genetic programming, estimation of distribution algorithms, and also discusses the issues of specific parameters used in parallel implementations, multi-objective evolutionary algorithms, and practical consideration for real-world applications. It is a recommended read for researchers and practitioners of evolutionary computation and heuristic methods.
This book constitutes the refereed proceedings of the 9th International Conference on Parallel Problem Solving from Nature, PPSN 2006. The book presents 106 revised full papers covering a wide range of topics, from evolutionary computation to swarm intelligence and bio-inspired computing to real-world applications. These are organized in topical sections on theory, new algorithms, applications, multi-objective optimization, evolutionary learning, as well as representations, operators, and empirical evaluation.
This book constitutes the refereed proceedings of the International Conference on Evolutionary Computation held jointly with the 4th Conference on Parallel Problem Solving from Nature, PPSN IV, in Berlin, Germany, in September 1996. The 103 revised papers presented in the volume were carefully selected from more than 160 submissions. The papers are organized in sections on basic concepts of evolutionary computation (EC), theoretical foundations of EC, modifications and extensions of evolutionary algorithms, comparison of methods, other metaphors, and applications of EC in a variety of areas like ML, NNs, engineering, CS, OR, and biology. The book has a comprehensive subject index.
This book constitutes the refereed proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, held in Guanajuato, Mexico, in March 2005. The 59 revised full papers presented together with 2 invited papers and the summary of a tutorial were carefully reviewed and selected from the 115 papers submitted. The papers are organized in topical sections on algorithm improvements, incorporation of preferences, performance analysis and comparison, uncertainty and noise, alternative methods, and applications in a broad variety of fields.
None