You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Sensorimotor integration, the dynamic process by which the sensory and motor systems communicate with each other, is crucial to humans’ and animals’ ability to explore and react to their environment. This book summarizes the main aspects of our current understanding of sensorimotor integration in 10 chapters written by leading scientists in this active and ever-growing field. This volume focuses on the whisker system, which is an exquisite model to experimentally approach sensorimotor integration in the mammalian brain. In this book, authors examine the whisker system on many different levels, ranging from the building blocks and neuronal circuits to sensorimotor behavior. Neuronal coding strategies, comparative analysis as well as robotics illustrate the multiple facets of this research and its broad impact on fundamental questions about the neurobiology of the mammalian brain.
Do you often lose your keys? You will find in this book the best strategy to find them, or at least the one deduced from statistical physics. What is the link with biology? Some proteins use the same strategy to find their target inside a living cell. This example illustrates one of the many links between physics and biology. These links result from an intense research activity in the past years at the interface between those two disciplines. This book describes some of the most recent progresses at this interface: from instrumental progresses used in biology to the mechanical description of a cell, to molecular motors, from brain activity mechanisms to auditory or sensory perception. Many fields are covered from the molecular to the scale at the organ level. A few biological notions are presented in the first chapter that may help to access the biological aspects of the others. In the end this book may interest people passionate in science, from the simple amateur to the advanced researcher level.
Annotation This book constitutes the proceedings of the conference on Haptics: Generating and Perceiving Tangible Sensations, held in Amsterdam, Netherlands in July 2010.
Understanding human hearing is not only a scientific challenge but also a problem of growing social and political importance, given the steadily increasing numbers of people with hearing deficits or even deafness. This book is about the highest level of hearing in humans and other mammals. It brings together studies of both humans and animals thereby giving a more profound understanding of the concepts, approaches, techniques, and knowledge of the auditory cortex. All of the most up-to-date procedures of non-invasive imaging are employed in the research that is described.
The answer to why, in spite of all the effort, knowledge, and technological means, the human mind has not been explained is provided in this look at the brain-mind connection. This analysis argues that the transformation from physical processes in the brain to mental representations and conscious perception can be explained by accepted, easy-to-understand scientific data. Various mental phenomena are examined, including choice capabilities, time perception, sleep, and dreams.
The transfers of natural mechanisms and structures into artificial, technical applications are successful approaches for innovation and become more important nowadays. The concept of Biomechatronics provides a structured framework to do so. Following these ideas, this work analyses a novel tactile sensor inspired by natural vibrissae. The sense of touch is an indispensable part of the sensory system of living beings. In, e.g., rats, the so-called vibrissal system, including long sensory hairs around the muzzle of the animals (vibrissae), is an essential part of tactile perception. Rats can determine the location, shape, and texture of an object by touching it with their vibrissae. Transferring these abilities to an artificial sensor design, the interaction between the hair/sensor shaft and different objects are analyzed. The sensor/hair shaft fulfills different functions in terms of a preprocessing of the captured signals. Therefore, by knowing and controlling these effects, the captured signals can be optimized in a way that particular information inside the captured signals is pronounced.
Seemingly simple behaviours turn out, on reflection, to be discouragingly complex. For many years, cognitive operations such as sensation, perception, comparing percepts to stored models (short-term and long-term memory), decision-making and planning of actions were treated by most neuroscientists as separate areas of research. This was not because the neuroscience community believed these operations to act independently—it is intuitive that any common cognitive process seamlessly interweaves these operations—but because too little was known about the individual processes constituting the full behaviour, and experimental paradigms and data collection methods were not sufficiently well de...
None
None
None