You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This IMA Volume in Mathematics and its Applications NONLINEAR STOCHASTIC PDEs: HYDRODYNAMIC LIMIT AND BURGERS' TURBULENCE is based on the proceedings of the period of concentration on Stochas tic Methods for Nonlinear PDEs which was an integral part of the 1993- 94 IMA program on "Emerging Applications of Probability." We thank Tadahisa Funaki and Wojbor A. Woyczynski for organizing this meeting and for editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made this workshop possible. A vner Friedman Willard Miller, Jr. xiii PREFACE A workshop on Nonlinear Stochastic Partial Differential Equations...
The purpose of this volume is examine bio-informatics and quantum information, which are growing rapidly at present, and to attempt to connect the two, with a view to enumerating and solving the many fundamental problems they entail. To this end, we look for interdisciplinary bridges in mathematics, physics, and information and life sciences. In particular, research into a new paradigm for information science and life science on the basis of quantum theory is emphasized.
But all the clocks in the city Began to whirr and chime: ’O let not Time deceive you, You cannot conquer Time. W. H. Auden It is hard to think of a subject as rich, complex, and important as time. From the practical point of view it governs and organizes our lives (most of us are after all attached to a wrist watch) or it helps us to wonderfully ?nd our way in unknown territory with the global positioning system (GPS). More generally it constitutes the heartbeat of modern technology. Time is the most precisely measured quantity, so the second de?nes the meter or the volt and yet, nobody knows for sure what it is, puzzling philosophers, artists, priests, and scientists for centuries as one ...
Over the years enormous effort was invested in proving ergodicity, but for a number of reasons, con?dence in the fruitfulness of this approach has waned. — Y. Ben-Menahem and I. Pitowsky [1] Abstract The basic motivation behind the present text is threefold: To give a new explanation for the emergence of thermodynamics, to investigate the interplay between quantum mechanics and thermodynamics, and to explore possible ext- sions of the common validity range of thermodynamics. Originally, thermodynamics has been a purely phenomenological science. Early s- entists (Galileo, Santorio, Celsius, Fahrenheit) tried to give de?nitions for quantities which were intuitively obvious to the observer, l...
Focuses on fundamental mathematical and computational methods underpinning physics. Relevant to statistical physics, chaotic and complex systems, classical and quantum mechanics, classical and quantum integrable systems and classical and quantum field theory.
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its ro...
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.
None