You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume constitutes the proceedings of the 7th International Conference on Simulated Evolution and Learning, SEAL 2008, held in Melbourne, Australia, during December 7-10, 2008. The 65 papers presented were carefully reviewed and selected from 140 submissions. The topics covered are evolutionary learning; evolutionary optimisation; hybrid learning; adaptive systems; theoretical issues in evolutionary computation; and real-world applications of evolutionary computation techniques.
Rule-basedevolutionaryonlinelearningsystems,oftenreferredtoasMichig- style learning classi?er systems (LCSs), were proposed nearly thirty years ago (Holland, 1976; Holland, 1977) originally calling them cognitive systems. LCSs combine the strength of reinforcement learning with the generali- tion capabilities of genetic algorithms promising a ?exible, online general- ing, solely reinforcement dependent learning system. However, despite several initial successful applications of LCSs and their interesting relations with a- mal learning and cognition, understanding of the systems remained somewhat obscured. Questions concerning learning complexity or convergence remained unanswered. Performanc...
Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but a...
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
This book constitutes the refereed proceedings of the 15th Australian Joint Conference on Artificial Intelligence, AI 2002, held in Canberra, Australia in December 2002. The 62 revised full papers and 12 posters presented were carefully reviewed and selected from 117 submissions. The papers are organized in topical sections on natural language and information retrieval, knowledge representation and reasoning, deduction, learning theory, agents, intelligent systems. Bayesian reasoning and classification, evolutionary algorithms, neural networks, reinforcement learning, constraints and scheduling, neural network applications, satisfiability reasoning, machine learning applications, fuzzy reasoning, and case-based reasoning.
Evolutionary scheduling is a vital research domain at the interface of artificial intelligence and operational research. This edited book gives an overview of many of the current developments in the large and growing field of evolutionary scheduling. It demonstrates the applicability of evolutionary computational techniques to solve scheduling problems, not only to small-scale test problems, but also fully-fledged real-world problems.
The newest volume in this series presents refereed papers in the following categories and their applications in the engineering domain: Neural Networks; Complex Networks; Evolutionary Programming; Data Mining; Fuzzy Logic; Adaptive Control; Pattern Recognition; Smart Engineering System Design. These papers are intended to provide a forum for researchers in the field to exchange ideas on smart engineering system design.