You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The term active fluids refers to motions that are created by transforming energy from the surroundings into directed motion. There are many examples, both natural and synthetic, including individual swimming bacteria or motile cells, drops and bubbles that move owing to surface stresses (so-called Marangoni motions), and chemical- or optical-driven colloids. Investigations into active fluids provide new insights into non-equilibrium systems, have the potential for novel applications, and open new directions in physics, chemistry, biology and engineering. This book provides an expert introduction to active fluids systems, covering simple to complex environments. It explains the interplay of c...
Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of f...
This series, Advances in Chemical Physics, provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline.
The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 31 include: Lattice-Boltzmann Modeling of Multicomponent Systems: An Introduction Modeling Mechanochemistry from First Principles Mapping Energy Transport Networks in Proteins The Role of Computations in Catalysis The Construction of Ab Initio Based Potential Energy Surfaces Uncertainty Quantification for Molecular Dynamics
Part B has subtitle: Low temperature and solid state physics(1975-76); Physics of condensed matter (1977-1982), and part C has subtitle: Atomic, molecular and plasma physics; optics.