You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Derived from the successful three-volume Handbook of Microscopy, this book provides a broad survey of the physical fundamentals and principles of all modern techniques of electron microscopy. This reference work on the method most often used for the characterization of surfaces offers a competent comparison of the feasibilities of the latest developments in this field of research. Topics include: * Stationary Beam Methods: Transmission Electron Microscopy/ Electron Energy Loss Spectroscopy/ Convergent Electron Beam Diffraction/ Low Energy Electron Microscopy/ Electron Holographic Methods * Scanning Beam Methods: Scanning Transmission Electron Microscopy/ Scanning Auger and XPS Microscopy/ Scanning Microanalysis/ Imaging Secondary Ion Mass Spectrometry * Magnetic Microscopy: Scanning Electron Microscopy with Polarization Analysis/ Spin Polarized Low Energy Electron Microscopy Materials scientists as well as any surface scientist will find this book an invaluable source of information for the principles of electron microscopy.
The aim of this monograph is to outline the physics of image formation, electron–specimen interactions, and image interpretation in transmission el- tron microscopy. Since the last edition, transmission electron microscopy has undergone a rapid evolution. The introduction of monochromators and - proved energy ?lters has allowed electron energy-loss spectra with an energy resolution down to about 0.1 eV to be obtained, and aberration correctors are now available that push the point-to-point resolution limit down below 0.1 nm. After the untimely death of Ludwig Reimer, Dr. Koelsch from Springer- Verlag asked me if I would be willing to prepare a new edition of the book. As it had served me a...
This volume contains an updated description of the experimental methods currently used in both Scanning and Transmission Electron Microscopy as well as the principles of electron optics and an outline of the most recent instrumental developments.The authors introduce the fundamental principles at the basis of the different techniques, the approximation used in the development of the theories, their range of validity, while stressing how to get microstructural information relevant in Materials Science.
This is a very special book for two reasons. First, it is a tribute to Professor Sir Peter Hirsch from his students, colleagues and friends. Second, it is a collection of specially written review articles by world-class scientists that take the readers from the origins of modem materials science through to the cutting edge of the subject in the twenty- first century. The book will be a valuable resource for all researchers in materials science, particularly those specialising in electron microscopy and diffraction, and in the mechanical properties of materials. The front and back covers of this book are coloured images of historic electron micrographs depicting the first observation in the w...
Modulated crystals have been intensively investigated over the past several years and it is now evident that an understanding of their crystallography and microstructure is fundamental to the elucidation of the physical properties and phase transitions in these materials. This book brings together for the first time the crystallographic descriptions and experimental methods for the structural and microstructural analysis of modulated crystals as described by well-known researchers in the various areas. The emphasis is on charge density wave modulations, and the detailed analysis of the prototypical NbTe4/TaTe4 system gives practical applications of the methods. Scanning Tunnelling Microscopy is a new technique providing significant new insights into atomic scale details of the modulations' structures and a chapter on this method is included.
None