You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Lifelong Machine Learning (or Lifelong Learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model. It makes no attempt to retain the learned knowledge and use it in future learning. Although this isolated learning paradigm has been very successful, it requir...
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past he...
Microarray technology is a major experimental tool for functional genomic explorations, and will continue to be a major tool throughout this decade and beyond. The recent explosion of this technology threatens to overwhelm the scientific community with massive quantities of data. Because microarray data analysis is an emerging field, very few analytical models currently exist. Methods of Microarray Data Analysis II is the second book in this pioneering series dedicated to this exciting new field. In a single reference, readers can learn about the most up-to-date methods, ranging from data normalization, feature selection, and discriminative analysis to machine learning techniques. Currently,...
Numerical Control: Part B, Volume 24 in the Handbook of Numerical Analysis series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this volume include Control problems in the coefficients and the domain for linear elliptic equations, Computational approaches for extremal geometric eigenvalue problems, Non-overlapping domain decomposition in space and time for PDE-constrained optimal control problems on networks, Feedback Control of Time-dependent Nonlinear PDEs with Applications in Fluid Dynamics, Stabilization of the Navier-Stokes equations - Theoretical and numerical aspects, Reconstruction...
None
This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of ...
Examines the crucial interaction between big data and communication, social and biological networks using critical mathematical tools and state-of-the-art research.