You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales. Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics cover...
The only comprehensive one-volume text/reference on metal-ligand multiple bonds. Stresses the unified nature of the field and includes handy new tabulations of data. The flow within each subtopic is oxygen to nitrogen to carbon. Coverage is up-to-date--virtually every subtopic leads to interesting questions for future research. Presents information otherwise scattered through hundreds of publications.
This book provides researchers in the fields of organic chemistry, organometallic chemistry and homogeneous catalysis with an overview of significant recent developments in the area of metal-ligand cooperativity, with a focus on pincer architectures. The various contributions highlight the widespread impact of M–L co-operativity phenomena on modern organometallic chemistry and catalyst development. The development of efficient and selective catalytic transformations relies on the understanding and fine control of the various elementary reactions that constitutes a catalytic cycle. Co-operative ligands, which actively participate in bond making and bond breaking together to the metal they support, open up new avenues in this area. In particular, buttressing a weak or reactive metal-ligand bond by flanking coordinating arms in a pincer ligand design is proving a versatile strategy to access robust metal complexes that exhibit unusual and selective reactivity patterns.
Metal complexes play important roles as catalysts or other participants in synthetic and biological reactions. Substrates and sometimes attacking reagents also are activated through coordination with metal atoms or ions. In these events the natures not only of the central metals but also of ancillary ligands exert important influences on the stability and reactivity of the coordinated substrates. A ligand in general can adopt various coordination modes depending on its chemical environment, thus functioning as a probe. The number of coordination modes increases with increasing complexity of the ligand. In this book it is shown that even the simplest mono- and diatomic ligands such as H, CO, ...
This, the second and final volume of Reactions of Coordinated Ligands, describes the chemistry of ligands bound through non-carbon atoms, and of coordinated carbon dioxide. As before, emphasis is on the underlying mechanisms, which provide a unity of understanding for superficially disparate processes. The wide range of topics covered illustrates well both the versatility and the usefulness of coordination chemistry in the controlled activation of ligands. Looking to the future, carbon dioxide is the feedstock of last resort. The homogeneous reduction of dinitrogen to ammonia now seems unlikely to replace the Haber process, but solution reactions also lead to more complex, varied, and valuab...
The book Ligand describes the diversity and versatility of ligands, covering structural features, donor-acceptor properties and secondary functions like molecular recognition. Moreover, this book also provides a comprehensive account on the applicability like catalysis, sensors, supramolecular assembly, photochemical property, bioinorganic chemistry, and so on. The advancement of fundamentals in ligand design and the control of physicochemical properties of coordination compounds has largely increased emphasis on understanding the structural and electronic features toward different perspectives in materials science. In this regard, this book has a special appeal to chemists, biologists and others. This book will be beneficial for the graduate students, teachers, researchers and other professionals who are interested to fortify and expand their knowledge in chemistry, biology, microbiology, biotechnology, materials science, environmental science and so on.
Serving as a user's manual for synthetic organic and catalytic chemists, this book guides chemists in the design and choice of ligands to catalyze organic reactions and apply the results for more efficient, green, and practical synthesis. • Focuses on the role of ligands in metal complexes that catalyze green organic transformations: a hot topic in the area of organic synthesis and green chemistry • Offers a comprehensive resource to help readers design and choose ligands and understand selectivity/reactivity characteristics • Addresses a gap by taking novel ligand approaches and including up-to-date discussion on hydrogen transfers and reactions • Presents important industrial perspective and provides rational explanations of ligand effects, impacts, and novelty