You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Building on decades of “host-guest” research, recent years have seen a surge of activity in water-soluble supramolecular receptors for protein recognition and assembly. Progress has been particularly rich in the area of calixarenes, cucurbiturils and molecular tweezers. Emerging applications include controlled protein assembly in solution, crystal engineering, supramolecular control of catalysis (both in vitro and in vivo), as well as novel mechanisms of protein-interaction inhibition with relevance to amyloids and disease. One challenge at the interface of supramolecular chemistry and protein science is to increase interaction and collaboration between chemists and biochemists/structura...
Cucurbiturils (CBs) are a young family of molecular containers, able to form stable complexes with various guests, including drug molecules, amino acids and peptides, saccharides, dyes, hydrocarbons, perfluorinated hydrocarbons, and proteins. Since the discovery of the first CB, the field has seen tremendous growth with respect to the synthesis of new homologues and derivatives, the discovery of record binding affinities of guest molecules in their hydrophobic cavity, and associated applications ranging from sensing to drug delivery. Cucurbiturils and Related Macrocycles provides a complete overview of CB chemistry, covering the fundamental aspects including its history, synthesis, host–gu...
Amino Acids, Peptides and Proteins comprises a comprehensive review of significant developments at this biology/chemistry interface. Each volume of this Specialist Periodical Report opens with an overview of amino acids and their applications. Volume 37 marks the return of the series after a five-year hiatus, with Professors Etelka Farkas (Debrecen, Hungary) and Max Ryadnov (National Physical Laboratory, UK) as the new volume editors. There has been considerable progress in the field since the last publication in 2007, and predominantly this volume looks back over the last two year rather than the usual 12-months. However, traditional concepts are also revisited in the context of recent discoveries. Each chapter incorporates current trends of the reviewed topic and the authors' outlook of future perspectives. This is to facilitate the monitoring of the covered areas and their potentianl expansion with the inclusion of other specialist reports in subsequent volume. All chapters are compiled by leading researchers in their subject areas which offers this series as an appealing source of information for the research community in both academia and industry.
Many key aspects of life are based on naturally occurring polymers, such as polysaccharides, proteins and DNA. Unsurprisingly, their molecular functionalities, macromolecular structures and material properties are providing inspiration for designing new polymeric materials with specific functions, for example, responsive, adaptive and self-healing materials. Bio-inspired Polymers covers all aspects of the subject, ranging from the synthesis of novel polymers, to structure-property relationships, materials with advanced properties and applications of bio-inspired polymers in such diverse fields as drug delivery, tissue engineering, optical materials and lightweight structural materials. Written and edited by leading experts on the topic, the book provides a comprehensive review and essential graduate level text on bio-inspired polymers for biochemists, materials scientists and chemists working in both industry and academia.
None
The first major reference at the interface of chemistry, biology, and medicine Chemical biology is a rapidly developing field that uses the principles, tools, and language of chemistry to answer important questions in the life sciences. It has enabled researchers to gather critical information about the molecular biology of the cell and is the fundamental science of drug discovery, playing a key role in the development of novel agents for the prevention, diagnosis, and treatment of disease. Now students and researchers across the range of disciplines that use chemical biology techniques have a single resource that encapsulates what is known in the field. It is an excellent place to begin any...
The first major reference at the interface of chemistry, biology, and medicine Chemical biology is a rapidly developing field that uses the principles, tools, and language of chemistry to answer important questions in the life sciences. It has enabled researchers to gather critical information about the molecular biology of the cell and is the fundamental science of drug discovery, playing a key role in the development of novel agents for the prevention, diagnosis, and treatment of disease. Now students and researchers across the range of disciplines that use chemical biology techniques have a single resource that encapsulates what is known in the field. It is an excellent place to begin any...
The first major reference at the interface of chemistry, biology, and medicine Chemical biology is a rapidly developing field that uses the principles, tools, and language of chemistry to answer important questions in the life sciences. It has enabled researchers to gather critical information about the molecular biology of the cell and is the fundamental science of drug discovery, playing a key role in the development of novel agents for the prevention, diagnosis, and treatment of disease. Now students and researchers across the range of disciplines that use chemical biology techniques have a single resource that encapsulates what is known in the field. It is an excellent place to begin any...
The first major reference at the interface of chemistry, biology, and medicine Chemical biology is a rapidly developing field that uses the principles, tools, and language of chemistry to answer important questions in the life sciences. It has enabled researchers to gather critical information about the molecular biology of the cell and is the fundamental science of drug discovery, playing a key role in the development of novel agents for the prevention, diagnosis, and treatment of disease. Now students and researchers across the range of disciplines that use chemical biology techniques have a single resource that encapsulates what is known in the field. It is an excellent place to begin any...