You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any priorknowledge of the topic; Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning; Not tied to any specific software language or hardware implementation.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help yo...
"This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe
The purpose of this book is to provide an up-to-date and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass computers that improve from experience in quite straightforward ways. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides a good introduction to many approaches of machine learning, and it is also the source of useful bibliographical information.
This book attempts to provide a unified overview of the broad field of Machine Learning and its Practical implementation. This book is a survey of the state of art. It breaks this massive subject into comprehensible parts piece by piece. The objective is to focus on basic principles of machine learning with some leading edge topics. This book addresses a full spectrum of machine learning programming. The emphasis is to solve lot many programming examples using step-by step practical implementation of machine learning algorithms. To facilitate easy understanding of machine learning, this book has been written in such a simple style that a student thinks as if a teacher is sitting behind him and guiding him. This book is written as per the new syllabus of different Universities of India. It also Cover the syllabus of B.Tech.(CSE/IT), MCA, BCA of Delhi University, Delhi. GGSIPU, MDU, RGTU, Nagpur University, UTU, APJ Abdul Kalam University so on. The book is intended for both academic and professional audience.
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.
Guide covering topics from machine learning, regression models, neural network to tensor flow DESCRIPTION Machine learning is mostly sought in the research field and has become an integral part of many research projects nowadays including commercial applications, as well as academic research. Application of machine learning ranges from finding friends on social networking sites to medical diagnosis and even satellite processing. In this book, we have made an honest effort to make the concepts of machine learning easy and give basic programs in MATLAB right from the installation part. Although the real-time application of machine learning is endless, however, the basic concepts and algorithms...
Unlock the secrets of data science and machine learning with our comprehensive Python course, designed to take you from basics to complex algorithms effortlessly Key Features Navigate through Python's machine learning libraries effectively Learn exploratory data analysis and data scrubbing techniques Design and evaluate machine learning models with precision Book DescriptionThe course starts by setting the foundation with an introduction to machine learning, Python, and essential libraries, ensuring you grasp the basics before diving deeper. It then progresses through exploratory data analysis, data scrubbing, and pre-model algorithms, equipping you with the skills to understand and prepare ...
The ability to learn is one of the most fundamental attributes of intelligent behavior. Consequently, progress in the theory and computer modeling of learn ing processes is of great significance to fields concerned with understanding in telligence. Such fields include cognitive science, artificial intelligence, infor mation science, pattern recognition, psychology, education, epistemology, philosophy, and related disciplines. The recent observance of the silver anniversary of artificial intelligence has been heralded by a surge of interest in machine learning-both in building models of human learning and in understanding how machines might be endowed with the ability to learn. This renewed i...