Welcome to our book review site www.go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Number Theory
  • Language: en
  • Pages: 292

Number Theory

Undergraduate text uses combinatorial approach to accommodate both math majors and liberal arts students. Covers the basics of number theory, offers an outstanding introduction to partitions, plus chapters on multiplicativity-divisibility, quadratic congruences, additivity, and more.

Number Theory
  • Language: en
  • Pages: 327

Number Theory

In spite of the fact that arithmetic majors are generally familiar with number hypothesis when they have finished a course in conceptual polynomial math, different students, particularly those in training and the human sciences, regularly require a more essential prologue to the theme. In this book the writer takes care of the issue of keeping up the enthusiasm of understudies at the two levels by offering a combinatorial way to deal with basic number hypothesis. In concentrate number hypothesis from such a point of view, arithmetic majors are saved reiteration and furnished with new bits of knowledge, while different understudies advantage from the subsequent effortlessness of the verificat...

Elementary Number Theory
  • Language: en
  • Pages: 305

Elementary Number Theory

Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical back ground or maturity from the reader, and which can be read and understood with no extra assistance. Our first three chapters are based almost entirely on A-level mathematics, while the next five require little else beyond some el ementary group theory. It is only in the last three chapters, where we treat more advanced topics, including recent developments, that we require greater mathematical background; here we use some basic ideas which students would expect to meet in the first year or so of a typical undergraduate course in math ematics. Throug...

Number Theory
  • Language: en
  • Pages: 177

Number Theory

  • Type: Book
  • -
  • Published: 2020
  • -
  • Publisher: Unknown

Number theory is the branch of mathematics primarily concerned with the counting numbers, especially primes. It dates back to the ancient Greeks, but today it has great practical importance in cryptography, from credit card security to national defence. This book introduces the main areas of number theory, and some of its most interesting problems.

Introduction to Number Theory
  • Language: en
  • Pages: 537

Introduction to Number Theory

  • Type: Book
  • -
  • Published: 2007-10-30
  • -
  • Publisher: CRC Press

One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics. This classroom-tested, student-friendly text covers a wide range of subjects, from the ancient Euclidean algorithm for finding the greatest common divisor of two integers to recent developments that include cryptography, the theory of elliptic curves, and the negative solution of Hilbert’s tenth problem. The authors illustrate the connections betwee...

Fundamentals of Number Theory
  • Language: en
  • Pages: 292

Fundamentals of Number Theory

This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory...

Number Theory
  • Language: en
  • Pages: 350

Number Theory

This book provides an introduction and overview of number theory based on the distribution and properties of primes. This unique approach provides both a firm background in the standard material as well as an overview of the whole discipline. All the essential topics are covered: fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. Analytic number theory and algebraic number theory both receive a solid introductory treatment. The book’s user-friendly style, historical context, and wide range of exercises make it ideal for self study and classroom use.

Number Theory
  • Language: en
  • Pages: 392

Number Theory

The aim of this book is to familiarize the reader with fundamental topics in number theory: theory of divisibility, arithmetrical functions, prime numbers, geometry of numbers, additive number theory, probabilistic number theory, theory of Diophantine approximations and algebraic number theory. The author tries to show the connection between number theory and other branches of mathematics with the resultant tools adopted in the book ranging from algebra to probability theory, but without exceeding the undergraduate students who wish to be acquainted with number theory, graduate students intending to specialize in this field and researchers requiring the present state of knowledge.

Number Theory With Applications
  • Language: en
  • Pages: 243

Number Theory With Applications

Novel and important applications of number theory to graph theory and vice versa had been made in the past decade. The two main tools used are based on the estimates of character sums and the estimates of the eigenvalues of Hecke operators, both are rooted in the celebrated Weil conjectures settled by Deligne in 1973. The purpose of this book is to give, from scratch, a coherent and comprehensive introduction to the topics in number theory related to the central tools, with the ultimate goal of presenting their applications. This book includes many important subjects in number theory, such as Weil conjectures, Riemann-Roch theorem, L-functions, character sum estimates, modular forms, and representation theory.

Elements of Number Theory
  • Language: en
  • Pages: 288

Elements of Number Theory

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.