You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The contributions in this book give a high-level coverage of many of the subjects and techniques needed to understand the physics of low-dimensional condensed matter systems. The topics presented include the use of conformal field theories, the Luttinger liquid approach to one-dimensional electron systems, and the use of random matrices in problems connected with quantum chaos. The contributions are authored by some of the most prominent physicists active in the field, among them the 1998 Nobel Prize laureate R. B. Laughlin. The book should become an extremely useful instrument for all those interested in theoretical condensed matter physics.
Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.
This volume is a review on the recent progresses done in the understanding of the physics of the superconducting arrays. It consists of five sessions:All the topical contributions go well beyond those characteristics of the condensed matter physics and offer links to the domains of the nonlinear science, complex systems and statistical mechanics.
This book is a treasured documentation of the talks given at the meeting authors have organized. Gordon Semenoff has left a legacy of influence in the theoretical physics community in Canada and globally. His contributions to the field are far-reaching and significant. He is held in the highest esteem by world-renowned. Authors are celebrating his 70th birthday with this conference. All of the speakers who will be contributing to the volume will have been his collaborators or his close colleagues.
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. This book presents new and important research from around the world.
None
None