You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the detailed text of the major lectures delivered during the I-CELMECH Training School 2020 held in Milan (Italy). The school aimed to present a contemporary review of recent results in the field of celestial mechanics, with special emphasis on theoretical aspects. The stability of the Solar System, the rotations of celestial bodies and orbit determination, as well as the novel scientific needs raised by the discovery of exoplanetary systems, the management of the space debris problem and the modern space mission design are some of the fundamental problems in the modern developments of celestial mechanics. This book covers different topics, such as Hamiltonian normal forms, the three-body problem, the Euler (or two-centre) problem, conservative and dissipative standard maps and spin-orbit problems, rotational dynamics of extended bodies, Arnold diffusion, orbit determination, space debris, Fast Lyapunov Indicators (FLI), transit orbits and answer to a crucial question, how did Kepler discover his celebrated laws? Thus, the book is a valuable resource for graduate students and researchers in the field of celestial mechanics and aerospace engineering.
During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leadi...
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
This volume presents a wide cross-section of current research in the theory of dynamical systems and contains articles by leading researchers, including several Fields medalists, in a variety of specialties. These are surveys, usually with new results included, as well as research papers that are included because of their potentially high impact. Major areas covered include hyperbolic dynamics, elliptic dynamics, mechanics, geometry, ergodic theory, group actions, rigidity, applications. The target audience includes dynamicists, who will find new results in their own specialty as well as surveys in others, and mathematicians from other disciplines wholook for a sample of current developments in ergodic theory and dynamical systems.
Dynamical systems that are amenable to formulation in terms of a Hamiltonian function or operator encompass a vast swath of fundamental cases in applied mathematics and physics. This carefully edited volume represents work carried out during the special program on Hamiltonian Systems at MSRI in the Fall of 2018. Topics covered include KAM theory, polygonal billiards, Arnold diffusion, quantum hydrodynamics, viscosity solutions of the Hamilton–Jacobi equation, surfaces of locally minimal flux, Denjoy subsystems and horseshoes, and relations to symplectic topology.
A collection of up-to-date research and classic papers reflecting the work of Michael Herman.
This volume contains extended abstracts outlining selected presentations delivered by participants of the joint international multidisciplinary workshop MURPHYS-HSFS-2018 (MUltiRate Processes and HYSteresis; Hysteresis and Slow-Fast Systems), dedicated to the mathematical theory and applications of the multiple scale systems, the systems with hysteresis and general trends in the dynamical systems theory. The workshop was jointly organized by the Centre de Recerca Matemàtica (CRM), Barcelona, and the Collaborative Research Center 910, Berlin, and held at the Centre de Recerca Matemàtica in Bellaterra, Barcelona, from May 28th to June 1st, 2018. This was the ninth workshop continuing a serie...