You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The 20th century has seen a phenomenal growth in the global economy and continuous improvement in the standard of living in the industrialized countries. Sustainable development has become an ideal target in recent years and in the early 1990s the concept of "Green chemistry" was launched in the USA as a new paradigm, and since 1993 it has been promoted by the National Science Foundation (NSF) and the Environmental Protection Agency (EPA). The success of the pharmaceutical industry is, in large part, due to the towering achievement of organic chemistry, a mature science which emerged as a distinct discipline well over 150 years ago, however this has been both a blessing and a curse. Many of our most reliable strategies for assembling target molecules employ reactions which are fifty to one hundred years old and are often named in honour of their discoverers.
Nanomaterials in the Battle Against Pathogens and Disease Vectors presents an overview of the use of nanotechnology to mitigate pathogens of concern, and is the first book to discuss applications of nanotechnology in the fight against all three major domains of disease-causing pathogens. Bacteria, viruses, and parasites constitute the list of emerging and re-emerging pathogens of high priority. Nanotechnology has proven to be a groundbreaking success in the elimination, targeted toxicity, precise immunogenicity, diagnosis, and imaging of these major pathogens and disease vectors. This text discusses basic concepts and advanced applications for bacteria, viruses, and parasites. It describes the use of metallic and non-metallic nanoparticles and nanotoxicity, as well as presents future applications of nanotechnology in biological applications. This work is ideal for engineers and scientists across the interdisciplinary fields of materials science, biomedical engineering, biotechnology, and others concerned with mitigating the risk and effect of pathogens.
The valorization of lignocellulosic biomass, in the form of forest and agricultural wastes, industrial processing side-streams, and dedicated energy crops, toward chemicals, fuels and added-value products has become a major research area with increasing exploitation potential. The efficient and tailored depolymerization of biomass or its primary structural components (hemicellulose, cellulose, and lignin) to platform chemicals, i.e., sugars, phenolics, furans, ketones, organic acids, etc. is highly dependent on the development of novel or modified chemo- and bio-catalytic processes that take into account the peculiarities and recalcitrance of biomass as feedstock, compared for example to pet...
This book highlights the state-of-the-art research and discovery in the use of chitosan-based nanocomposites in biomedical applications, including the scope to which these novel materials have been incorporated by the community. It provides an exceptional insight into the strategies for the synthesis and chemical modifications of chitosan, characterization techniques, their use as anticancer agents, antimicrobial, antiviral, and antifungal agents, their role in the biomedical field, and applications in drug delivery, gene therapy, dentistry, orthopedics, etc. This book will also emphasize the challenges with previous signs of progress and way for further research, details relating to the current pioneering technology, and future perspectives with a multidisciplinary approach. Furthermore, it presents up-to-date information on the economics, toxicity, and regulations related to these novel materials.
This book explores the synthesis, characterization, and applications of graphene and its derivatives. It covers advancements in improving graphene quality, surface engineering methods, and increasing material functionality. The topics covered include functionalized graphene, graphene quantum dots, novel device fabrication approaches, and diverse applications. The book also investigates the fundamental principles of characterizing graphene and its derivatives, along with electronic structures, theoretical investigations, and computational analyses relevant to their applications, synthesis, and properties. The chapters are organized to cover these topics, starting with a general overview of surface chemistry and its concepts for surface engineering of graphene, the fundamental properties of graphene and its derivatives, their synthesis, and applications in numerous fields, and concludes with a future perspective. Significantly, for the first time, both industrial and medical applications are gathered in one book, enabling us to discuss the confrontation of medical and industrial applications of graphene and graphene quantum dots.
This book constitutes the refereed post-conference proceedings of the First International Conference on Data and Information in Online Environments, DIONE 2020, which took place in Florianópolis, Brazil, in March 2020. DIONE 2020 handles the growing interaction between the information sciences, communication sciences and computer sciences. The 18 revised full papers were carefully reviewed and selected from 37 submissions and focus on the production, dissemination and evaluation of contents in online environments. The goal is to improve cooperation between data science, natural language processing, data engineering, big data, research evaluation, network science, sociology of science and communication communities.
Polymer-supported organic catalysts are largely insoluble in most reaction solvents, which allows for easy recovery and recycling of the catalysts. They are generally stable, readily available, and environmental friendly, so they have attracted the interest of many synthetic chemists in the industrial and academic fields. In this book, different types of polymer-supported catalysts based on peptides, polystyrene, polyethers, poly(acrylic acid), poly(ethylene imine), poly(2-oxazoline), poly(isobutylene), poly(norbornene), etc., as well as metals are included with their synthetic organic synthesis applications. It is believed that this work will be of interest to organic chemists, material scientists, chemical engineers, polymer scientists and technologists.