You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Despite of many years of studies, predicting fluid flow, heat, and chemical transport in fractured-porous media remains a challenge for scientists and engineers worldwide. This monograph is the third in a series on the dynamics of fluids and transport in fractured rock published by the American Geophysical Union (Geophysical Monograph Series, Vol. 162, 2005; and Geophysical Monograph, No. 122, 2000). This monograph is dedicated to the late Dr. Paul Witherspoon for his seminal influence on the development of ideas and methodologies and the birth of contemporary fractured rock hydrogeology, including such fundamental and applied problems as environmental remediation; exploitation of oil, gas, ...
"This volume brings together nineteen papers of interdisciplinary Quaternary science honoring Stephen Porter. Special Paper 548 features papers from six continents, on wide-ranging topics including glaciation, paleoecology, landscape evolution, megafloods, and loess. The topical and geographical range of the papers, as well as their interdisciplinary nature, honor Porter's distinct approach to Quaternary science and leadership that influence the field to this day"--
"In the latter half of the twentieth century, lakes and lacustrine deposit systems were recognized as outstanding examples of depositional systems, serving as models with global applications; many may serve as harbingers of environmental change. The chapters explore environmental variability, sedimentary processes, fire history, the impact of lakes on crustal flexure, and abrupt climate events in arid regions, often through the application of new tools and proxies"--
Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: An in-depth discussion of the global water cycle Approaches to various problems in climate, weather, hydrology, and agriculture Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale
Subduction dynamics has been actively studied through seismology, mineral physics, and laboratory and numerical experiments. Understanding the dynamics of the subducting slab is critical to a better understanding of the primary societally relevant natural hazards emerging from our planetary interior, the megathrust earthquakes and consequent tsunamis. Subduction Dynamics is the result of a meeting that was held between August 19 and 22, 2012 on Jeju island, South Korea, where about fifty researchers from East Asia, North America and Europe met. Chapters treat diverse topics ranging from the response of the ionosphere to earthquake and tsunamis, to the origin of mid-continental volcanism thou...
Earth now is dominated by both biogeophysical and anthropogenic processes, as represented in these two images from a simulation of aerosols. Dust (red) from the Sahara sweeps west across the Atlantic Ocean. Sea salt (blue) rises into the atmosphere from winds over the North Atlantic and from a tropical cyclone in the Indian Ocean. Organic and black carbon (green) from biomass burning is notable over the Amazon and Southeast Asia. Plumes of sulfate (white) from fossil fuel burning are particularly prominent over northeastern North America and East Asia. If present trends of dust emissions and fossil fuel burning continues in what we call the Anthropocene epoch, then we could experience high a...
Hawaiian Volcanoes, From Source to Surface is the outcome of an AGU Chapman Conference held on the Island of Hawai‘i in August 2012. As such, this monograph contains a diversity of research results that highlight the current understanding of how Hawaiian volcanoes work and point out fundamental questions requiring additional exploration. Volume highlights include: Studies that span a range of depths within Earth, from the deep mantle to the atmosphere Methods that cross the disciplines of geochemistry, geology, and geophysics to address issues of fundamental importance to Hawai‘i’s volcanoes Data for use in comparisons with other volcanoes, which can benefit from, and contribute to, a better understanding of Hawai‘i Discussions of the current issues that need to be addressed for a better understanding of Hawaiian volcanism Hawaiian Volcanoes, From Source to Surface will be a valuable resource not only for researchers studying basaltic volcanism and scientists generally interested in volcanoes, but also students beginning their careers in geosciences. This volume will also be of great interest to igneous petrologists, geochemists, and geophysicists.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 199. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interacti...
None