You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advances in Mathematical Modeling for Reliability discusses fundamental issues on mathematical modeling in reliability theory and its applications. Beginning with an extensive discussion of graphical modeling and Bayesian networks, the focus shifts towards repairable systems: a discussion about how sensitive availability calculations parameter choices, and emulators provide the potential to perform such calculations on complicated systems to a fair degree of accuracy and in a computationally efficient manner. Another issue that is addressed is how competing risks arise in reliability and maintenance analysis through the ways in which data is censored. Mixture failure rate modeling is also a point of discussion, as well as the signature of systems, where the properties of the system through the signature from the probability distributions on the lifetime of the components are distinguished. The last three topics of discussion are relations among aging and stochastic dependence, theoretical advances in modeling, inference and computation, and recent advances in recurrent event modeling and inference.
This book contains extended versions of 34 carefully selected and reviewed papers presented at the Third International Conference on Mathematical Methods in Reliability, held in Trondheim, Norway in 2002. It provides a broad overview of current research activities in reliability theory and its applications. There are chapters on reliability modelling, network and system reliability, reliability optimization, survival analysis, degradation and maintenance modelling, and software reliability. The authors are all leading experts in the field. A particular feature of the book is a historical review by Professor Richard E Barlow, well known for his pioneering research on reliability. The list of ...
This book addresses a modern topic in reliability: multi-state and continuous-state system reliability, which has been intensively developed in recent years. It offers an up-to-date overview of the latest developments in reliability theory for multi-state systems, engineering applications to a variety of technical problems, and case studies that will be of interest to reliability engineers and industrial managers. It also covers corresponding theoretical issues, as well as case studies illustrating the applications of the corresponding theoretical advances. The book is divided into two parts: Modern Mathematical Methods for Multi-state System Reliability Analysis (Part 1), and Applications and Case Studies (Part 2), which examines real-world multi-state systems. It will greatly benefit scientists and researchers working in reliability, as well as practitioners and managers with an interest in reliability and performability analysis. It can also be used as a textbook or as a supporting text for postgraduate courses in Industrial Engineering, Electrical Engineering, Mechanical Engineering, Applied Mathematics, and Operations Research.
Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical Models and Methods in Survival Analysis, and Reliability and Maintenance. The book is intended for researchers interested in statistical methodology and models useful in survival analysis, system reliability and statistical testing for censored and non-censored data.
Conceiving reliablesystems is a strategic issue for any industrial society. Hence, reliability has become a discipline at the beginning of the Second World War. In fact, reliability is a field of reseach common to mathematics, operational research, informatics, graph theory, physics, and so forth. We are concerned here with the mathematical side of reliability, of which probability, statistics, and more specially stochastic processes theory constitute the natural basis. US army during the war, and later in the US Problems encountered by the and Soviet space programs, have led to an awarenessofthe need for reliabilityor more generaly for dependability (a general term covering reliability, ava...
Recent Advances in System Reliability discusses developments in modern reliability theory such as signatures, multi-state systems and statistical inference. It describes the latest achievements in these fields, and covers the application of these achievements to reliability engineering practice. The chapters cover a wide range of new theoretical subjects and have been written by leading experts in reliability theory and its applications. The topics include: concepts and different definitions of signatures (D-spectra), their properties and applications to reliability of coherent systems and network-type structures; Lz-transform of Markov stochastic process and its application to multi-state s...
None
A scientific and educational journal not only for professional statisticians but also for economists, business executives, research directors, government officials, university professors, and others who are seriously interested in the application of statistical methods to practical problems, in the development of more useful methods, and in the improvement of basic statistical data.