You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents an interdisciplinary overview on the most recent advances in QSAR studies. The first part consists of a comprehensive review of QSAR methodology. The second part highlights the interdisciplinary aspects and new areas of QSAR modelling.
Vol. 2 of Chemoinformatics of Natural Products introduces the reader to the currently available tools for toxicity prediction, drug property prediction, an enumeration of compounds, scaffolds and functional groups in nature, computational methods for lead identification, metabolite biosynthesis, etc. Selected case studies and hands-on tutorial exercises have been included.
This book reviews the evolving field of epigenetics and its implications for drug discovery and precision medicine. It also focuses on the intricate mechanisms governing gene regulation and the impact of epigenetics on health and disease. The book encompasses the complexities of epigenetic mechanisms and their role in diseases such as cancer, autoimmune disorders, inflammatory conditions, and neurodegenerative diseases. Additionally, it examines the role of miRNA as an epigenetic drug in treating cancer and in silco approaches to epigenetic drug discovery. The book uncovers the potential of epigenetic drug discovery, including insights into traditional medicine, marine sources, and OMICS tec...
This book presents an authoritative review of the most significant findings about all the epigenetic targets (writers, readers, and erasers) and their implication in physiology and pathology. The book also covers the design, synthesis and biological validation of epigenetic chemical modulators, which can be useful as novel chemotherapeutic agents. Particular attention is given to the chemical mechanisms of action of these molecules and to the drug discovery prose which allows their identification. This book will appeal to students who want to know the extensive progresses made by epigenetics (targets and modulators) in the last years from the beginning, and to specialized scientists who need an instrument to quickly search and check historical and/or updated notices about epigenetics.
Edited by world-famous pioneers in chemoinformatics, this is a clearly structured and applications-oriented approach to the topic, providing up-to-date and focused information on the wide range of applications in this exciting field. The authors explain methods and software tools, such that the reader will not only learn the basics but also how to use the different software packages available. Experts describe applications in such different fields as structure-spectra correlations, virtual screening, prediction of active sites, library design, the prediction of the properties of chemicals, the development of new cosmetics products, quality control in food, the design of new materials with improved properties, toxicity modeling, assessment of the risk of chemicals, and the control of chemical processes. The book is aimed at advanced students as well as lectures but also at scientists that want to learn how chemoinformatics could assist them in solving their daily scientific tasks. Together with the corresponding textbook Chemoinformatics - Basic Concepts and Methods (ISBN 9783527331093) on the fundamentals of chemoinformatics readers will have a comprehensive overview of the field.
This fully updated edition provides a series of methods for how best to assess functions of histone deacetylases and acetyltransferases. The disease-relevance of dysregulated protein deacetylation by overexpressed or aberrantly activated histone deacetylases has spurred an intense search for novel and improved inhibitors of these enzymes, as reflected in this collection. Expert contributors explore the generation and evaluation of novel histone deacetylase inhibitors and new and improved techniques to assess acetylation-dependent molecular mechanisms in vitro and in vivo. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, HDAC/HAT Function Assessment and Inhibitor Development: Methods and Protocols, Second Edition serves as an ideal guide for researchers seeking to further elucidate this vital area of study.
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 27 covers brittle fracture, molecular detailed simulations of lipid bilayers, semiclassical bohmian dynamics, dissipative particle dynamics, trajectory-based rare event simulations, and understanding metal/metal electrical contact conductance from the atomic to continuum scales. Also included is a chapter on career opportunities in computational chemistry and an appendix listing the e-mail addresses of more than 2500 people in that discipline. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." —JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." —JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
This handbook is the first to address the practical aspects of this novel method. It provides a complete overview of the field and progresses from general considerations to real life scenarios in drug discovery research. Starting with an introductory historical overview, the authors move on to discuss ligand-based approaches, including 3D pharmacophores and 4D QSAR, as well as the concept and application of pseudoreceptors. The next section on structure-based approaches includes pharmcophores from ligand-protein complexes, FLIP and 3D protein-ligand binding interactions. The whole is rounded off with a complete section devoted to applications and examples, including modeling of ADME properties. With its critical evaluation of pharmacophore-based strategies, this book represents a valuable aid for project leaders and decision-makers in the pharmaceutical industry, as well as pharmacologists, and medicinal and chemists.
This unique reference source, edited by the world's most respected expert on molecular interaction field software, covers all relevant principles of the GRID force field and its applications in medicinal chemistry. Entire chapters on 3D-QSAR, pharmacophore searches, docking studies, metabolism predictions and protein selectivity studies, among others, offer a concise overview of this emerging field. As an added bonus, this handbook includes a CD-ROM with the latest commercial versions of the GRID program and related software.