You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based lin...
For a long time an automatic detection of contacts between humans was not possible. In this work a new generation of resource-aware RFID tags (proximity tags) is used which has the ability to detect reliable face-to-face contacts. This innovation opens up new research possibilities in the ?elds of human contact behaviour analysis, link prediction and indoor localisation. In this context the identi?cation of human contact structures and their underlying pro¬cesses is a prominent research topic. However, the analysis of of?ine social networks has been largely neglected. In this work face-to-face information is utilised to study the link prediction problem as well as dynamic and static contact...
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
This book is the fifth volume in the series of Collected Papers on Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. This volume specifically delves into the concept of Various SuperHyperConcepts, building on the foundational advancements introduced in previous volumes. The series aims to explore the ongoing evolution of uncertain combinatorics through innovative methodologies such as graphization, hyperization, and uncertainization. These approaches integrate and extend core concepts from fuzzy, neutrosophic, soft, and rough set theories, providing robust frameworks to model and analyze the inherent comp...
This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.
Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. In recent years social media has gained significant popularity and has become an essential medium of communication. Such user-generated content provides an excellent scenario for applying the metaphor of mining any information. Transfer learning is a research problem in machine learning that focuses on leveraging the knowledge gained while solving one problem and applying it to a different, but related problem. Features: Offers novel frameworks to study user behavior and for addressing and explaining task heterogeneity Presents a detailed study of existing research Provides convergence and complexity analysis of the frameworks Includes algorithms to implement the proposed research work Covers extensive empirical analysis Social Media Analytics for User Behavior Modeling: A Task Heterogeneity Perspective is a guide to user behavior modeling in heterogeneous settings and is of great use to the machine learning community.
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrat...
This open access book delves into the fundamental principles and cutting-edge techniques of plenoptic imaging and processing. Derived from the Latin words "plenus" (meaning "full") and "optic," plenoptic imaging offers a transformative approach to optical imaging. Unlike conventional systems that rely solely on the pinhole camera model to capture spatial information, plenoptic imaging aims to detect and reconstruct multidimensional and multiscale information from light rays in space. Chapter 1 begins with the introduction of the basic principle of the plenoptic function and the historical development of plenoptic imaging. Next, Chapter 2 describes representative plenoptic sensing systems, in...
None