You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under...
Examines the important topic of fuel cell science by way of combining membrane design, chemical degradation mechanisms, and stabilization strategies This book describes the mechanism of membrane degradation and stabilization, as well as the search for stable membranes that can be used in alkaline fuel cells. Arranged in ten chapters, the book presents detailed studies that can help readers understand the attack and degradation mechanisms of polymer membranes and mitigation strategies. Coverage starts from fundamentals and moves to different fuel cell membrane types and methods to profile and analyze them. The Chemistry of Membranes Used in Fuel Cells: Degradation and Stabilization features c...
The Handbook of Membrane Separations: Chemical, Pharmaceutical, and Biotechnological Applications provides detailed information on membrane separation technologies as they have evolved over the past decades. To provide a basic understanding of membrane technology, this book documents the developments dealing with these technologies. It explores chemical, pharmaceutical, food processing and biotechnological applications of membrane processes ranging from selective separation to solvent and material recovery. This text also presents in-depth knowledge of membrane separation mechanisms, transport models, membrane permeability computations, membrane types and modules, as well as membrane reactors.
None