You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.
Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the socalled Shockley-Queisser limit. This book presents the latest developments in photovoltai...
Modern Luminescence: From Fundamental Concepts to Materials and Applications, Volume One, Concepts and Luminescence is a multivolume work that reviews the fundamental principles, properties and applications of luminescent materials. Topics addressed include key concepts of luminescence, with a focus on important characterization techniques to understand a wide category of luminescent materials. The most relevant luminescent materials, such as transition metals, rare-earth materials, actinide-based materials, and organic materials are discussed, along with emerging applications of luminescent materials in biomedicine, solid state devices, and the development of hybrid materials. This book is ...
Photovoltaics have started replacing fossil fuels as major energy generation roadmaps, targeting higher efficiencies and/or lower costs are aggressively pursued to bring PV to cost parity with grid electricity. Third generation PV technologies may overcome the fundamental limitations of photon to electron conversion in single-junction devices and, thus, improve both their efficiency and cost. This book presents notable advances in these technologies, namely organic cells and nanostructures, dye-sensitized cells and multijunction III/V cells. The following topics are addressed: Solar spectrum conversion for photovoltaics using nanoparticles; multiscale modeling of heterojunctions in organic PV; technologies and manufacturing of OPV; life cycle assessment of OPV; new materials and architectures for dye-sensitized solar cells; advances of concentrating PV; modeling doped III/V alloys; polymeric films for lowering the cost of PV, and field performance factors. A panel of acclaimed PV professionals contributed these topics, compiling the state of knowledge for advancing this new generation of PV.
Proceedings of the International Conference on Rare Earths, held in Fremantle, Western Australia, October 25-30, 1998
Selected, peer reviewed papers from the 2014 2nd International Conference on Energy Material, Chemical Engineering and Mining Engineering (EMCEM 2014), January 12-13 2014, Wuhan, China
This book describes a unique combination of quantum chemical methods for calculating the basic physical properties of luminescent materials, or phosphors. These solid inorganic materials containing an optically active dopant are key players in several major fields of societal interest, including energy-efficient lighting, solar cells, and medical imaging. The novel ab initio methods described in this book are especially designed to target the crowded and complex electronic excited states of lanthanide activators in inorganic solids. The book is well suited to both new and experienced researchers alike and appeals to a broad range of theoretical and experimental backgrounds. The material presented enables an adept understanding of elaborate calculations, which, in tandem with experiments, give essential insight into difficult luminescence problems and quandaries, thus fully preparing the reader for an educated search for new functional luminescent materials
Selected, peer reviewed papers from the International Scientific Conference Oxide Materials for Electronic Engineering - Fabrication, Properties and Applications (OMEE 2012), September 3-7, 2012, Lviv, Ukraine
Proceedings of Symposium F, European Materials Research Society, Fall Meeting 2003, Warsaw University of Technology, 15th-19th September, 2003