You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nonlinear Econometric Modeling in Time Series presents the more recent literature on nonlinear time series. Specific topics covered with respect to nonlinearity include cointegration tests, risk-related asymmetries, structural breaks and outliers, Bayesian analysis with a threshold, consistency and asymptotic normality, asymptotic inference and error-correction models. With a world-class panel of contributors, this volume addresses topics with major applications for fields such as foreign-exchange markets and interest rate analysis. Eleventh in this series of international symposia, this volume is also part of the European Conference Series in Quantitative Economics and Econometrics (EC)2.
The Indian economy has emerged as one of the world?s fastest growing economies in the past few years. Greater investment, increased productivity, and deeper integration in the world economy have been the key growth drivers. Nonetheless, three main challenges remain: insufficient job creation in the formal sector; large and growing disparities between states; and increasing, but still low, productivity. India's Investment Climate identifies what the government can do to tackle these challenges by improving the investment climate for three key sectors, manufacturing, retail and software-ITES. Th.
Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.
Robert Engle received the Nobel Prize for Economics in 2003 for his work in time series econometrics. This book contains 16 original research contributions by some the leading academic researchers in the fields of time series econometrics, forecasting, volatility modelling, financial econometrics and urban economics, along with historical perspectives related to field of time series econometrics more generally. Engle's Nobel Prize citation focuses on his path-breaking work on autoregressive conditional heteroskedasticity (ARCH) and the profound effect that this work has had on the field of financial econometrics. Several of the chapters focus on conditional heteroskedasticity, and develop the ideas of Engle's Nobel Prize winning work. Engle's work has had its most profound effect on the modelling of financial variables and several of the chapters use newly developed time series methods to study the behavior of financial variables. Each of the 16 chapters may be read in isolation, but they all importantly build on and relate to the seminal work by Nobel Laureate Robert F. Engle.
In this paper, we propose a new econometric approach to jointly model the time series dynamics of the trading process and the revisions of ask and bid prices. We use this model to test the validity of certain symmetry assumptions very common among microstructure models. Namely, we test whether ask and bid quotes respond symmetrically to trade-related shocks, and whether buyer-initiated trades and seller-initiated trades are equally informative. In essence, the procedure we propose generalizes Hasbrouck’s (1991) vector autoregressive model for signed trades and changes in the quote midpoint by relaxing the implicit symmetry assumptions in his model. The properties of the empirical model are...