You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We present in this volume the collection of finally accepted papers of the eighth edition of the “IWANN” conference (“International Work-Conference on Artificial Neural Networks”). This biennial meeting focuses on the foundations, theory, models and applications of systems inspired by nature (neural networks, fuzzy logic and evolutionary systems). Since the first edition of IWANN in Granada (LNCS 540, 1991), the Artificial Neural Network (ANN) community, and the domain itself, have matured and evolved. Under the ANN banner we find a very heterogeneous scenario with a main interest and objective: to better understand nature and beings for the correct elaboration of theories, models an...
The two volume set LNCS 3696 and LNCS 3697 constitutes the refereed proceedings of the 15th International Conference on Artificial Neural Networks, ICANN 2005, held in Warsaw, Poland in September 2005. The over 600 papers submitted to ICANN 2005 were thoroughly reviewed and carefully selected for presentation. The first volume includes 106 contributions related to Biological Inspirations; topics addressed are modeling the brain and cognitive functions, development of cognitive powers in embodied systems spiking neural networks, associative memory models, models of biological functions, projects in the area of neuroIT, evolutionary and other biological inspirations, self-organizing maps and t...
We present in this volume the collection of finally accepted papers of the eighth edition of the “IWANN” conference (“International Work-Conference on Artificial Neural Networks”). This biennial meeting focuses on the foundations, theory, models and applications of systems inspired by nature (neural networks, fuzzy logic and evolutionary systems). Since the first edition of IWANN in Granada (LNCS 540, 1991), the Artificial Neural Network (ANN) community, and the domain itself, have matured and evolved. Under the ANN banner we find a very heterogeneous scenario with a main interest and objective: to better understand nature and beings for the correct elaboration of theories, models an...
This two-volume set LNCS 7902 and 7903 constitutes the refereed proceedings of the 12th International Work-Conference on Artificial Neural Networks, IWANN 2013, held in Puerto de la Cruz, Tenerife, Spain, in June 2013. The 116 revised papers were carefully reviewed and selected from numerous submissions for presentation in two volumes. The papers explore sections on mathematical and theoretical methods in computational intelligence, neurocomputational formulations, learning and adaptation emulation of cognitive functions, bio-inspired systems and neuro-engineering, advanced topics in computational intelligence and applications.
This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15–16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles’ filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ances...
"This book is a comprehensive and in-depth reference to the most recent developments in the field covering theoretical developments, techniques, technologies, among others"--Provided by publisher.
L'analyse et la prédiction de séries temporelles sont des défis scientifiques importants, qui trouvent leurs applications dans des domaines aussi variés que la finance, la production électrique, l’hydrologie, la climatologie, etc. Comme ils englobent les modèles linéaires, les modèles non linéaires offrent potentiellement des performances supérieures mais ils posent cependant également des problèmes complexes tels que des minima locaux pour la fonction à optimiser, des temps de calcul très longs, une sélection de structure de modèle rendue plus difficile et une détermination de régresseur plus ardue. On définit tout d’abord la meilleure structure de modèle comme celle...