You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume One: Types and Triggers discusses, in detail, the recent trends in designing biodegradable and biocompatible single-responsive polymers and nanoparticles for safe drug delivery. Focusing on the most advanced materials and technologies, evaluation methods, and advanced synthesis techniques stimuli-responsive polymers, the book is an essential reference for scientists with an interest in drug delivery vehicles. Sections focus on innovation, development and the increased global demand for biodegradable and biocompatible responsive polymers and nanoparticles for safe drug delivery. - Offers an in-depth look at the basic and fundamental aspects of alternative stimuli-responsive polymers, mechanisms, structure, synthesis and properties - Provides a well-defined categorization for stimuli-responsive polymers for drug delivery based on different triggering mechanisms - Discusses novel approaches and challenges for scaling up and commercialization of stimuli-responsive polymers
2D Materials for Surface Plasmon Resonance-based Sensors offers comprehensive coverage of recent design and development (including processing and fabrication) of 2D materials in the context of plasmonic-based devices. It provides a thorough overview of the basic principles and techniques used in the analysis and design of 2D material-based optical sensor systems. Beginning with the basic concepts of plasmon/plasmonic sensors and mathematical modelling, the authors explain the fundamental properties of 2D materials, including Black Phosphorus (BP), Phosphorene, Graphene, Transition metal dichalcogenides (TMDCs), MXene's and SW-CNT. It also details the applications of these emerging materials ...
Emerging Phytosynthesized Nanomaterials for Biomedical Applications provides readers with an increased understanding of the efficacy of phytochemicals obtained from plant extracts for the synthesis of nanomaterials, mechanism of formation, and the development of functional composites, all while still minimizing toxicity to humans and the environment. The book presents various novel biomedical applications of phytosynthesized nanomaterials for cancer, diabetes and cardiovascular treatment, drug delivery, antimicrobial agents, orthopedics, and biosensors, as well as pharmaceutical product development. This is an important reference source for biomaterials scientists and plant scientists lookin...
Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing presents the latest on the design of nanoscale materials and their applications in sustainable chemical production processes. The newest achievements of materials science, in particular nanomaterials, opened new opportunities for chemical engineers to design more efficient, safe, compact and environmentally benign processes. These materials include metal-organic frameworks, graphene, membranes, imprinted polymers, polymers of intrinsic microporosity, nanoparticles, and nanofilms, to name a few. Topics discussed include gas separation, CO2 sequestration, continuous processes, waste valorization, catalytic processes, bioengineering, pharmaceutical manufacturing, supercritical CO2 technology, sustainable energy, molecular imprinting, graphene, nature inspired chemical engineering, desalination, and more. - Describes new, efficient and environmentally accepted processes for nanomaterials design - Includes a large array of materials, such as metal-organic frameworks, graphene, imprinted polymers, and more - Explores the contribution of these materials in the development of sustainable chemical processes
The multidisciplinary field of food sensor development is evolving rapidly. Prompt detection of food contaminants is vital for public health protection. Significant advances are taking place in the design and development of sensitive, affordable, and user-friendly sensors for food safety and security. This book covers various recent advances in food sensor development, using illustrative descriptions of successful practical applications as well as identifying existing challenges and prospects. Compiling current progress in food quality sensors such as electrochemical sensors, nanocomposite sensors, aptamer based immunosensors, and microfluidic lab-on-a-chip devices, it fills a gap in the literature by laying down a framework for food sensor development from idea to implementation. With an emphasis on multidisciplinary aspects, the book appeals to students, academics, researchers and industry personnel from diverse backgrounds with an interest in food science and food quality assurance.