You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The problems considered range from basic theoretical issues in the calculus of variations - such as infinite dimensional Hamilton Jacobi equations, saddle point principles, and issues of unique continuation - to ones focusing on application and computation, where theoretical tools are tuned to more specifically defined problems.
This research presents some important domains of partial differential equations and applied mathematics including calculus of variations, control theory, modelling, numerical analysis and various applications in physics, mechanics and engineering. These topics are now part of many areas of science and have experienced tremendous development during the last decades.
In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientists.
This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future.
This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future. Contents: Steady Free Convection in a Bounded and Saturated Porous Medium (S Akesbi et al.); Quasilinear Parabolic Functional Evolution Equations (H Amann); A Linear Parabolic Problem with Non-Dissipative Dynamical Boundary Conditions (C Bandle & W Reichel); Remarks on Some Class of Nonlocal Elliptic Problems (M Chipot); On ...
This volume is a collection of original research papers and expository articles stemming from the scientific program of the Nonlinear PDE Emphasis Year held at Northwestern University (Evanston, IL) in March 1998. The book offers a cross-section of the most significant recent advances and current trends and directions in nonlinear partial differential equations and related topics. The book's contributions offer two perspectives. There are papers on general analytical treatment of the theory and papers on computational methods and applications originating from significant realistic mathematical models of natural phenomena. Also included are articles that bridge the gap between these two perspectives, seeking synergistic links between theory and modeling and computation. The volume offers direct insight into recent trends in PDEs. This volume is also available on the Web. Those who purchase the print edition can gain free access by going to www.ams.org/conm/.
The proceedings of a Symposium Year on Material instabilities in continuum mechanics organized by the Department of Mathematics, Heriot-Watt University, Edinburgh, 1985-1986.