You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Genetic Programming Theory and Practice VII presents the results of the annual Genetic Programming Theory and Practice Workshop, contributed by the foremost international researchers and practitioners in the GP arena. Contributions examine the similarities and differences between theoretical and empirical results on real-world problems, and explore the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. Application areas include chemical process control, circuit design, financial data mining and bio-informatics, to name a few. About this book: Discusses the hurdles encountered when solving large-scale, cutting-edge applications, provides in-depth presentations of the latest and most significant applications of GP and the most recent theoretical results with direct applicability to state-of-the-art problems. Genetic Programming Theory and Practice VII is suitable for researchers, practitioners and students of Genetic Programming, including industry technical staffs, technical consultants and business entrepreneurs.
The three-volume set LNAI 3213, LNAI 3214, and LNAI 3215 constitutes the refereed proceedings of the 8th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2004, held in Wellington, New Zealand in September 2004. The over 450 papers presented were carefully reviewed and selected from numerous submissions. The papers present a wealth of original research results from the field of intelligent information processing in the broadest sense; among the areas covered are artificial intelligence, computational intelligence, cognitive technologies, soft computing, data mining, knowledge processing, various new paradigms in biologically inspired computing, and applications in various domains like bioinformatics, finance, signal processing etc.
This book brings together some of the most impactful researchers in the field of Genetic Programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year ́s book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state of the art in GP research.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm co...
Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and present...
There is an easier way to build Hadoop applications. With this hands-on book, you’ll learn how to use Cascading, the open source abstraction framework for Hadoop that lets you easily create and manage powerful enterprise-grade data processing applications—without having to learn the intricacies of MapReduce. Working with sample apps based on Java and other JVM languages, you’ll quickly learn Cascading’s streamlined approach to data processing, data filtering, and workflow optimization. This book demonstrates how this framework can help your business extract meaningful information from large amounts of distributed data. Start working on Cascading example projects right away Model and ...
Proceedings Annie Conference, November 2006, St. Louis, Missouri. The newest volume in this series presents refereed papers in the following categories and their applications in the engineering domain: Neural Networks; Complex Networks; Evolutionary Programming; Data Mining; Fuzzy Logic; Adaptive Control; Pattern Recognition; Smart Engineering System Design. These papers are intended to provide a forum for researchers in the field to exchange ideas on smart engineering system design.
None