You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fundamentals of Uncertainty Quantification for Engineers: Methods and Models provides a comprehensive introduction to uncertainty quantification (UQ) accompanied by a wide variety of applied examples and implementation details to reinforce the concepts outlined in the book. Sections start with an introduction to the history of probability theory and an overview of recent developments of UQ methods in the domains of applied mathematics and data science. Major concepts of copula, Monte Carlo sampling, Markov chain Monte Carlo, polynomial regression, Gaussian process regression, polynomial chaos expansion, stochastic collocation, Bayesian inference, modelform uncertainty, multi-fidelity modelin...
The 2nd Annual 2016 International Workshop on Materials Science and Engineering (IWMSE 2016) was held in Guangzhou, Guangdong, China on August 12 - August 14, 2016. The main aim of IWMSE 2016 was to provide a platform for scientists and engineers, to get together to share their research findings, exchange ideas and identify the future directions of R&D in materials science.In this conference, we have received over 272 high-quality papers, however, only 160 articles are included in the proceedings, covering topics such as ceramics and glasses, amorphous materials, nanomaterials and thin layers, soft magnetic materials, biomaterials, polymers, photovoltaic materials, steels, tool materials, composites, as well as functional and smart materials.
Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms. It is also uniquely compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to incre
Uncertainty, Modeling, and Decision Making in Geotechnics shows how uncertainty quantification and numerical modeling can complement each other to enhance decision-making in geotechnical practice, filling a critical gap in guiding practitioners to address uncertainties directly. The book helps practitioners acquire a working knowledge of geotechnical risk and reliability methods and guides them to use these methods wisely in conjunction with data and numerical modeling. In particular, it provides guidance on the selection of realistic statistics and a cost-effective, accessible method to address different design objectives, and for different problem settings, and illustrates the value of this to decision-making using realistic examples. Bringing together statistical characterization, reliability analysis, reliability-based design, probabilistic inverse analysis, and physical insights drawn from case studies, this reference guide from an international team of experts offers an excellent resource for state-of-the-practice uncertainty-informed geotechnical design for specialist practitioners and the research community.
The Handbook of RAMS in Railway Systems: Theory and Practice addresses the complexity in today's railway systems, which use computers and electromechanical components to increase efficiency while ensuring a high level of safety. RAM (Reliability, Availability, Maintainability) addresses the specifications and standards that manufacturers and operators have to meet. Modeling, implementation, and assessment of RAM and safety requires the integration of railway engineering systems; mathematical and statistical methods; standards compliance; and financial/economic factors. This Handbook brings together a group of experts to present RAM and safety in a modern, comprehensive manner.