You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Recent developments in air pollution modelling are explored as a series of contributions from researchers at the forefront of their field. This book on air pollution modelling and its application is focused on local, urban, regional and intercontinental modelling; data assimilation and air quality forecasting; model assessment and evaluation; aerosol transformation; the relationship between air quality and human health and the effects of climate change on air quality. It consists of a series of papers that were presented at the 30th NATO/SPS International Technical Meeting on Air Pollution Modelling and its Application held in San Francisco, U.S.A., May 18-22, 2009. It is intended as reference material for students and professors interested in air pollution modelling at the graduate level as well as researchers and professionals involved in developing and utilizing air pollution models.
This work addresses the interactions of aerosols, clouds and dynamics in case of a so-called Medicane. This type of cyclone occurs over the Mediterranean Sea, showing similarities to Hurricanes over the Atlantic and Pacific Ocean. Due to the high wind speed of the Medicane, a large amount of sea salt particles is emitted over the sea. This can influence the development of the Medicane, its associated clouds, and precipitation.
The impact of land-surface properties like vegetation, soil type, soil moisture, and the orography on the atmosphere is manifold. These features determine the evolution of the atmospheric boundary layer, convective conditions, cloud evolution and precipitation. The impact of model grid spacing and land-surface resolution on convective precipitation over heterogeneous surfaces is investigated using ICOsahedral Nonhydrostatic (ICON) simulations within the framework of the HD(CP)2 project.
The international bestseller that gives you the facts about climate change When students David Nelles and Christian Serrer struggled to find a book that explained the nuts and bolts of climate change in a way that was comprehensive, concise and enjoyable to read, they decided to write it themselves. With meticulous research corroborated by over 100 scientists, Small Gases, Big Effect summarizes all the latest findings on the causes and effects of climate change. Combining clear, thoughtful writing with illuminating graphics, it is a little book that presents complex scientific evidence in a way that everyone will find easy to understand.
Presents the latest advances in borehole distributed acoustic sensing and diverse applications for subsurface geophysics Borehole geophysics involves measuring, imaging, and monitoring subsurface structures and activities by putting instruments into wellbores. Distributed acoustic sensing (DAS) technology is emerging as an effective and reliable tool in borehole geophysics because optic fiber cables deployed at depth can produce high-quality data and images, even in harsh high-temperature and high-pressure environments. Distributed Acoustic Sensing in Borehole Geophysics is a comprehensive handbook on cutting-edge advances in borehole DAS technologies and their practical applications across ...
Improving weather and climate prediction with better representation of fast processes in atmospheric models Many atmospheric processes that influence Earth’s weather and climate occur at spatiotemporal scales that are too small to be resolved in large scale models. They must be parameterized, which means approximately representing them by variables that can be resolved by model grids. Fast Processes in Large-Scale Atmospheric Models: Progress, Challenges and Opportunities explores ways to better investigate and represent multiple parameterized processes in models and thus improve their ability to make accurate climate and weather predictions. Volume highlights include: Historical developme...
A comprehensive review of the sources and impacts of different types of marine noise Measuring devices such as ocean bottom seismometers and hydrophones designed to detect earthquakes pick up many other signals. These were previously ignored as background noise from unknown sources, but advanced technology now allows insights into the noise created from icebergs, ships, hydrothermal vents, whales, rain, marine engineering, and more. Noisy Oceans: Monitoring Seismic and Acoustic Signals in the Marine Environment is a comprehensive guide to non-tectonic marine noise originating from different environmental, biological, and anthropogenic sources. Volume highlights include: Overview of marine soundscapes and their sources Existing and new methods for studying acoustic signals Case studies from around the world Spans disciplines from geology and geophysicists to biology Explores the impacts and implications of marine noise The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
An interdisciplinary review of recent advances in Alfvén wave research Alfvén waves are fundamental to the dynamics of space plasmas. Recent advances in our knowledge about Alfvén waves have come from several directions, including new space missions to unexplored heliospheric regions, sophisticated rocket campaigns in the auroral zone, enlarged magnetometer arrays and radar networks, and significant advances in computer modeling. Alfvén Waves Across Heliophysics: Progress, Challenges, and Opportunities is an interdisciplinary collaboration from different space science communities to review recent and current Alfvén wave research. Volume highlights include: Alfvén waves in the solar atmosphere Alfvén waves at the giant planets Alfvén waves at Mars Alfvén waves in moon-magnetosphere systems Alfvén waves in geospace Alfvén waves in the laboratory Find out more about this book in this Q&A with the Editor. The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Studying atmospheric particles from a microscopic perspective Most of what is visible in the atmosphere - such as pollution, dust, haze, fog, and clouds - is due to micrometer- and nanometer-sized aerosol particles. It is important to understand the source, characteristics, and behavior of these small particles as they play a fundamental role in large-scale atmospheric processes. Microanalysis of Atmospheric Particles: Techniques and Applications presents different microscopic techniques for studying aerosols and explores a range of applications in climate studies and air quality studies. Volume highlights include: Overview of different techniques and applications In depth descriptions of sc...
Exploring how clouds influence radiation, circulation, and precipitation Clouds are an influential and complex element of Earth's climate system. They evolve rapidly in time and exist over small spatial scales, but also affect global radiative balance and large-scale circulations. With more powerful models and extensive observations now at our disposal, the climate impact of clouds is receiving ever more research attention. Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation presents an overview of our current understanding on various types of clouds and cloud systems and their multifaceted role in the radiative budget, circulation patterns, and rainfall. Volume high...