You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The QM/MM method, short for quantum mechanical/molecular mechanical, is a highly versatile approach for the study of chemical phenomena, combining the accuracy of quantum chemistry to describe the region of interest with the efficiency of molecular mechanical potentials to represent the remaining part of the system. Originally conceived in the 1970s by the influential work of the the Nobel laureates Martin Karplus, Michael Levitt and Arieh Warshel, QM/MM techniques have evolved into one of the most accurate and general approaches to investigate the properties of chemical systems via computational methods. Whereas the first applications have been focused on studies of organic and biomolecular...
Cheminformatics has emerged as an applied branch of Chemistry that involves multidisciplinary knowledge, connecting related fields such as chemistry, computer science, biology, pharmacology, physics, and mathematical statistics.The book is organized in two sections, including multiple aspects related to advances in the development of informatic tools and their specific use in compound structure databases with various applications in life sciences, mainly in medicinal chemistry, for identification and development of new therapeutically active molecules. The book covers aspects related to genomic analysis, semantic similarity, chemometrics, pattern recognition techniques, chemical reactivity prediction, drug-likeness assessment, bioavailability, biological target recognition, machine-based drug discovery and design. Results from various computational tools and methods are discussed in the context of new compound design and development, sharing promising opportunities, and perspectives.
This book is a contribution to the fast and broad Density Functional Theory (DFT) applications of the last few years. Since 2000, the DFT has grown exponentially in several computational areas because of its versatility and reliability to calculate energy from electronic density. The fast DFT’s calculations show how scientists develop more codes focused to simulate molecular and material properties reaching better conclusions than with previous theories. More powerful computers and lower computational costs have certainly assisted the increased growth of interest in this theory. Each chapter presents a specific subject contributing to a vision of the great potential of the quantum/DFT simulations in high pressure, chemical reactivity, ionic liquid, chemoinformatic, molecular docking, and non-equilibrium state.
This book provides detailed reviews of a range of nanostructures used in the construction of biosensors as well as the applications of these biosensor nanotechnologies in the biological, chemical, and environmental monitoring fields Biological sensing is a fundamental tool for understanding living systems, but also finds practical application in medicine, drug discovery, process control, food safety, environmental monitoring, defense, and personal security. Moreover, a deeper understanding of the bio/electronic interface leads us towards new horizons in areas such as bionics, power generation, and computing. Advances in telecommunications, expert systems, and distributed diagnostics prompt u...
Density Functional Theory (DFT) is a powerful technique for calculating and comprehending the molecular and electrical structure of atoms, molecules, clusters, and solids. Its use is based not only on the capacity to calculate the molecular characteristics of the species of interest but also on the provision of interesting concepts that aid in a better understanding of the chemical reactivity of the systems under study. This book presents examples of recent advances, new perspectives, and applications of DFT for the understanding of chemical reactivity through descriptors forming the basis of Conceptual DFT as well as the application of the theory and its related computational procedures in the determination of the molecular properties of different systems of academic, social, and industrial interest.
Density Functional Theory (or DFT for short) is a potent methodology useful for calculating and understanding the molecular and electronic structure of atoms, molecules, clusters, and solids. Its use relies not only in the ability to calculate the molecular properties of the species of interest but also provides interesting concepts that allow a better comprehension of the chemical reactivity of the studied systems. This book represents an attempt to present examples on the utility of DFT for the understanding of the chemical reactivity through descriptors that constitute the basis of the so called Conceptual DFT (sometimes also named as Chemical Reactivity Theory) as well as the application of the theory and its related computational procedures in the determination of the molecular properties of different systems of academic and industrial interest.
None
Solvents and ionic liquids are ubiquitous within our whole life since ancient times and their effects are actually being studied through basic sciences like Chemistry, Physics and Biology as well as being researched by a large number of scientific disciplines.This book represents an attempt to present examples on the utility of old and new solvents and the effects they exercise on several fields of academic and industrial interest. The first section, Solvents, presents information on bio-solvents and their synthesis, industrial production and applications, about per and trichloroethylene air monitoring in dry cleaners in the city of Sfax (Tunsia) and on the synthesis of polyimides using molt...