You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Membrane Shape and Biological Function is an important guide for anyone interested in the dynamic world of biological membranes. The book explores how membrane shape influences crucial biological processes and highlights its practical applications. It delves into the mechanics of lipid bilayers, their role in cellular processes, and computational methods for understanding membrane remodeling, including real-world applications such as the Golgi apparatus' structure and function, the role of inositol phospholipids in cellular organization, membrane fusion in cell biology, and the potential of lipid bilayers in neuromorphic computing. This comprehensive resource is valuable for students, researchers, and anyone curious about membrane biology.
Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in a...
This book presents the various approaches in establishment the basic equations of one- and two-dimensional structural elements. In addition, the boundaries of validity of the theories and the estimation of errors in approximate theories are given. Many contributions contain not only new theories, but also new applications, which makes the book interesting for researcher and graduate students.
This book presents state-of-the-art experimental and modelling techniques for skin biophysics that are currently used in academic and industrial research. It also identifies current and future challenges, as well as a growing number of opportunities in this exciting research field. The book covers the basics of skin physiology, biology, microstructural and material properties, and progressively introduces the reader to established experimental characterisation protocols and modelling approaches. Advanced topics in modelling theories and numerical implementation are also presented. The book focusses especially on: 1. Basic physiology, molecular biology, microstructural and material properties...
The book presents a state-of-the-art overview of the fundamental theories, established models and ongoing research related to the modeling of these materials. Two approaches are conventionally used to develop constitutive relations for highly deformable fibrous materials. According to the phenomenological approach, a strain energy density function can be defined in terms of strain invariants. The other approach is based on kinetic theories, which treats a fibrous material as a randomly oriented inter-tangled network of long molecular chains bridged by permanent and temporary junctions. At the micro-level, these are associated with chemical crosslinks and active entanglements, respectively. The papers include carefully crafted overviews of the fundamental formulation of the three-dimensional theory from several points of view, and address their equivalences and differences. Also included are solutions to boundary-value problems which are amenable to experimental verification. A further aspect is the elasticity of filaments, stability of equilibrium and thermodynamics of the molecular network theory.
This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book's many notable features is the inclusion of more th
Gabrio Piola works had an enormous impact on the development of applied mathematics and continuum mechanics. An excellent scientific committee who took it upon themselves to translate his complete works. In a second step, they commented Piola’s work and compared it to modern theories in mechanics in order to stress Piola’s impact on modern science and proofs that he has set milestones in applied mathematics. This book presents Piola's original Italian text together with ist translations and their comments. It shows impressively that Gabrio Piola’s work must still be regarded as a modern theory.
This collection of 17 papers from the November 2000 conference covers flows of non-Newtonian fluids, turbulent flows of fluids, mechanics of granular materials, the mechanics of mixtures, crystallization of polymers, traditional plasticity and other aspects concerning inelastic behavior of materials
This volume presents a state-of-the-art overview of the continuum theory of both electro- and magneto-sensitive elastomers and polymers, which includes mathematical and computational aspects of the modelling of these materials from the point of view of material properties and, in particular, the "smart-material" control of their mechanical properties.