You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents an overview of current views on the origin of life and its earliest evolution. Each chapter describes key processes, environments and transition on the long road from geochemistry and astrochemistry to biochemistry and finally to the ancestors of today ́s organisms. This book combines the bottom-up and the top-down approaches to life including the origin of key chemical and structural features of living cells and the nature of abiotic factors that shaped these features in primordial environments. The book provides an overview of the topic as well as its state of the art for graduate students and newcomers to the field. It also serves as a reference for researchers in origins of life on Earth and beyond.
The Archean Earth: Tempos and Events, Second Edition is a process-based reference book that focuses on the most important events in early Earth, bringing together experts across Earth Sciences to give a comprehensive overview of the main events of the Archean Eon, as well as of the rates at which important geological and geobiological processes occurred in the same time interval. Over the last two decades, significant progress has been made in our understanding of the processes and events on the early Earth corresponding to advances in the analytical technologies and the continuing efforts of many colleagues that pursue their passion of unravelling the Archean rock record.The book addresses ...
The search for life is one of the most active fields in space science and involves a wide variety of scientific disciplines, including planetary science, astronomy and astrophysics, chemistry, biology, chemistry, and geoscience. In December 2016, the Space Studies Board hosted a workshop to explore the possibility of habitable environments in the solar system and in exoplanets, techniques for detecting life, and the instrumentation used. This publication summarizes the presentations and discussions from the workshop.
The attraction of selenium isotopes as a paleoenvironmental tracer lies in the high redox potential of selenium oxyanions (SeIV and SeVI), the dominant species in the modern ocean. The largest isotopic fractionations occur during oxyanion reduction, which makes selenium isotopes a sensitive proxy for the redox evolution of our planet. As a case study we review existing data from the Neoarchean and Paleoproterozoic, which show that significant isotopic fractionations are absent until 2.5 Ga, and prolonged isotopic deviations only appear around 2.3 Ga. Selenium isotopes have thus begun to reveal complex spatiotemporal redox patterns not reflected in other proxies.
The evolution of planet Earth and its biosphere are tightly linked through global biogeochemical cycles, and this dissertation seeks to explore this linkage during the Precambrian with new strategies and geochemical techniques. The first chapter is the result of a group project in which we propose that multiple environments and processes were involved in prebiotic chemistry. We conclude that the origin of life can be more plausibly explained if the various building blocks of living cells slowly emerged from global geochemical cycles. In the second part of my thesis (Chapters 2-3), I explore how microorganisms exploited and modified these cycles, in particular the global sulfur cycle. Statist...
None
None
None