You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Ball milling has emerged as a powerful tool over the past few years for effecting chemical reactions by mechanical energy. Allowing a variety of reactions to occur at ambient temperatures and in solvent-free conditions, ball milling presents a greener route for many chemical processes. Compared to the use of microwave and ultrasound as energy sources for chemical reactions, ball milling is not as familiar to chemists and yet it holds great potential. This book will introduce practicing chemists to the technique and will highlight its importance for green transformations. Current applications of ball milling will be covered in detail as well as its origin, recent developments and future scope, challenges and prospects. Chemical transformations covered include carbon-carbon and carbon-heteroatom bond formation, oxidation by solid oxidants, asymmetric organo-catalytic reactions, dehydrogenative coupling, peptide syntheses and polymeric material syntheses. The book will provide a valuable guide for organic, inorganic and organometallic chemists, material scientists, polymer scientists, reaction engineers and postgraduate students in chemistry.
October 23-25, 2017 Paris, France Key Topics: Food Science & Technology: Tools, Techniques and Instrumentation, Food Processing, Preservation and Packaging, Food and Nutrition, Food Microbes: Probiotics and Functional Foods, The Chemistry of Food Ingredients, Food Security: The Rising Crisis and Its Manangement, Food Public Health & Hygene, Food Industry and Health Hazard, Medical Foods: Enteral Nutrient Solution, Food Safety: Prevention and Control, Diary Food and its Commercial Future, Food Waste Management, Food Adultration: Laws policy and governance, Food Marketing and Economics, Baby Food and its Future Potential, Food Farming and Machinery, Food Psychology,
Recent years have seen huge growth in the area of sustainable chemistry. In order to meet the chemical needs of the global population whilst minimising impacts on health and the environment it is essential to keep reconsidering and improving synthetic processes. Sustainable Organic Synthesis is a comprehensive collection of contributions, provided by specialists in Green Chemistry, covering topics ranging from catalytic approaches to benign and alternative reaction media, and innovative and more efficient technologies.
The principles of Green Chemistry aim to improve the sustainability of chemical processes and reduce the generation of hazardous substances. There has been great growth in the field over the past few years and the number of research groups working in this area is still increasing. Now one of the biggest challenges is to embed the Green Chemistry ideals of safety and sustainability as standard, both in industry and academia. In order to do this, it is important to create resources that detail different applications and approaches. Green Synthetic Processes and Procedures brings together expert contributors from across a number of areas of green synthesis to cover a diverse array of subjects. Providing a thorough overview of the current green synthetic toolbox, from biocatalysis to sonochemistry, this book is a useful resource for any chemist wishing to design cleaner and safer processes.
This book covers the latest technologies and challenges for water reuse and unconventional water resources. It presents a comprehensive overview of water reuse as a key approach toward a sustainable solution, and it offers an important multidisciplinary perspective. The book brings together topics spanning from water treatment technologies to social expectation and acceptance, from integrated decisional platforms for policymakers to industrial symbiosis, and from environmental sustainability to legislation aspects. It appeals to both academic and non-academic lecturers, being a valuable resource for teaching and research. Divided into 4 parts, the book begins with an introduction to water qu...
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years ...
Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment a...
As nanomaterials and their end products occupy the pinnacle position of consumer markets, it becomes vital to analyze their generation processes. One of the green chemistry principles underlines the need for unusual energy sources to generate them. Utilizing the extreme energy from the collapse of cavitation bubbles, generated by either ultrasound
With increasing energy prices and the drive to reduce CO2 emissions, food industries are challenged to find new technologies in order to reduce energy consumption, to meet legal requirements on emissions, product/process safety and control, and for cost reduction and increased quality as well as functionality. Extraction is one of the promising innovation themes that could contribute to sustainable growth in the chemical and food industries. For example, existing extraction technologies have considerable technological and scientific bottlenecks to overcome, such as often requiring up to 50% of investments in a new plant and more than 70% of total process energy used in food, fine chemicals a...