You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.
This comprehensive reference work provides an overview of the concepts, methodologies, and applications in computational linguistics and natural language processing (NLP). Features contributions by the top researchers in the field, reflecting the work that is driving the discipline forward Includes an introduction to the major theoretical issues in these fields, as well as the central engineering applications that the work has produced Presents the major developments in an accessible way, explaining the close connection between scientific understanding of the computational properties of natural language and the creation of effective language technologies Serves as an invaluable state-of-the-art reference source for computational linguists and software engineers developing NLP applications in industrial research and development labs of software companies
Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based appr...
This book constitutes the refereed proceedings of the 5th International Workshop on Document Analysis Systems, DAS 2002, held in Princeton, NJ, USA in August 2002 with sponsorship from IAPR.The 44 revised full papers presented together with 14 short papers were carefuly reviwed and selected for inclusion in the book. All current issues in document analysis systems are adressed. The papers are organized in topical sections on OCR features and systems, handwriting recognition, layout analysis, classifiers and learning, tables and forms, text extraction, indexing and retrieval, document engineering, and new applications.
The rapidly growing volume of available digital documents of various formats and the possibility to access these through Internet-based technologies, have led to the necessity to develop solid methods to properly organize and structure documents in large digital libraries and repositories. Due to the extremely large volumes of documents and to their unstructured form, most of the research efforts in this direction are dedicated to automatically infer structure and schemas that can help to better organize huge collections of documents and data. This book covers the latest advances in structure inference in heterogeneous collections of documents and data. The book brings a comprehensive view o...
From the participation of researchers in most important international conferences in the field, it is noted that activities in automatic document processing have been continuously growing. This book is an edited volume in Digital Document Processing where the chapters are written by several internationally renowned researchers in the domain. It will be useful for both students and researchers working on various aspects of document image analysis and recognition problems. It contains chapters on topics that are not covered by any textbook, but are more futuristic like “Going beyond the Myth of Paperlessness”, or interesting application areas like “The Role of Document Image Analysis in ...
The EURASIP workshop contributions collected in this volume have an interdisciplinary character. The authors include psychologists, biologists, engineers and mathematicians as well as computer scientists. The volume starts with two invited papers, by George Cybenko and by Eric Baum, on the formal study of the capabilities of neural networks. The following papers are organized into parts dealing with theory and algorithms, speech processing, image processing, and implementation. The workshop was sponsored by the European Association for Signal Processing without restriction on the origin of participants.
None
None