You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of a conference, sponsored by the Canadian Mathematical Society, on Group Actions and Invariant Theory, held in August, 1988 in Montreal. The conference was the third in a series bringing together researchers from North America and Europe (particularly Poland). The papers collected here will provide an overview of the state of the art of research in this area. The conference was primarily concerned with the geometric side of invariant theory, including explorations of the linearization problem for reductive group actions on affine spaces (with a counterexample given recently by J. Schwarz), spherical and complete symmetric varieties, reductive quotients, automorphisms of affine varieties, and homogeneous vector bundles.
Ring theorists and researchers in invariant theory and operator algebra met at Bowdoin for the 1984 AMS-IMS-SIAM Joint Summer Research Conference to exchange ideas about group actions on rings. This work discusses topics common to the three fields, including: $K$-theory, dual actions, semi-invariants and crossed products.
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier rese...
Presents an understanding of the sorts of problems one studies in group actions and the methods used to study such problems. This book features articles based upon lectures at the 1983 AMS-IMS-SIAM Joint Summer Research Conference, Group Actions on Manifolds, held at the University of Colorado.
The study of group actions is more than 100 years old but remains a widely studied topic in a variety of mathematic fields. A central development in the last 50 years is the phenomenon of rigidity, whereby one can classify actions of certain groups. This book looks at rigidity.
This volume contains the proceedings of the virtual AMS Special Session on Equivariant Cohomology, held March 19?20, 2022. Equivariant topology is the algebraic topology of spaces with symmetries. At the meeting, ?equivariant cohomology? was broadly interpreted to include related topics in equivariant topology and geometry such as Bredon cohomology, equivariant cobordism, GKM (Goresky, Kottwitz, and MacPherson) theory, equivariant $K$-theory, symplectic geometry, and equivariant Schubert calculus. This volume offers a view of the exciting progress made in these fields in the last twenty years. Several of the articles are surveys suitable for a general audience of topologists and geometers. To be broadly accessible, all the authors were instructed to make their presentations somewhat expository. This collection should be of interest and useful to graduate students and researchers alike.
This volume contains the proceedings of the Workshop on Topology held at the Pontificia Universidade Catolica in Rio de Janeiro in January 1992. Bringing together about one hundred mathematicians from Brazil and around the world, the workshop covered a variety of topics in differential and algebraic topology, including group actions, foliations, low-dimensional topology, and connections to differential geometry. The main concentration was on foliation theory, but there was a lively exchange on other current topics in topology. The volume contains an excellent list of open problems in foliation research, prepared with the participation of some of the top world experts in this area. Also presented here are two surveys on group actions---finite group actions and rigidity theory for Anosov actions---as well as an elementary survey of Thurston's geometric topology in dimensions 2 and 3 that would be accessible to advanced undergraduates and graduate students.
This monograph could be used for a graduate course on symplectic geometry as well as for independent study. The monograph starts with an introduction of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensive treatment of Equivariant cohomology. The monograph also contains detailed treatment of the Duistermaat-Heckman Theorem, geometric quantization, and flat connections on 2-manifolds. Finally, there is an appendix which provides background material on Lie groups. A course on differential topology is an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry.
Also the present second edition of this book is an introduction to the theory of clas sification, enumeration, construction and generation of finite unlabeled structures in mathematics and sciences. Since the publication of the first edition in 1991 the constructive theory of un labeled finite structures has made remarkable progress. For example, the first- designs with moderate parameters were constructed, in Bayreuth, by the end of 1994 ([9]). The crucial steps were - the prescription of a suitable group of automorphisms, i. e. a stabilizer, and the corresponding use of Kramer-Mesner matrices, together with - an implementation of an improved version of the LLL-algorithm that allowed to fin...