You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over recent years, embedded systems have gained an enormous amount of processing power and functionality. Many of the formerly external components can now be integrated into a single System-on-Chip. This tendency has resulted in a dramatic reduction in the size and cost of embedded systems. As a unique technology, the design of embedded systems is an essential element of many innovations. Embedded System Design: Topics, Techniques and Trends presents the technical program of the International Embedded Systems Symposium (IESS) 2007 held in Irvine, California. IESS is a unique forum to present novel ideas, exchange timely research results, and discuss the state of the art and future trends in ...
For the third year in a row, we are very happy to offer our readership an ebook of 11 articles that have achieved widespread acceptance within our core audience and beyond. This time it concerns articles published in 2024. These papers are among the large number that attained significant interest last year, but we selected just 11, which we consider to be the “best”. These articles have already made an impact in the form of original research or comprehensive reviews. As the Field Chief Editor, I would like to stand alongside our journal staff to honor all authors who contributed very high-level papers to the journal last year and are contributing to our success. We also thank the editors and reviewers of these papers, and of all papers this past year, for their invaluable contribution.
As almost no other technology, embedded systems is an essential element of many innovations in automotive engineering. New functions and improvements of already existing functions, as well as the compliance with traffic regulations and customer requirements, have only become possible by the increasing use of electronic systems, especially in the fields of driving, safety, reliability, and functionality. Along with the functionalities that increase in number and have to cooperate, the complexity of the entire system will increase. Synergy effects resulting from distributed application functionalities via several electronic control devies, exchanging information through the network brings abou...
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.
A special mention for 2004 is in order for the new Doctoral Symposium Workshop where three young postdoc researchers organized an original setup and formula to bring PhD students together and allow them to submit their research proposals for selection. A limited number of the submissions and their approaches were independently evaluated by a panel of senior experts at the conference, and presented by the students in front of a wider audience. These students also got free access to all other parts of the OTM program, and only paid a heavily discounted fee for the Doctoral Symposium itself. (In fact their attendance was largely sponsored by the other participants!) If evaluated as successful, ...
Despite its importance, the role of HdS is most often underestimated and the topic is not well represented in literature and education. To address this, Hardware-dependent Software brings together experts from different HdS areas. By providing a comprehensive overview of general HdS principles, tools, and applications, this book provides adequate insight into the current technology and upcoming developments in the domain of HdS. The reader will find an interesting text book with self-contained introductions to the principles of Real-Time Operating Systems (RTOS), the emerging BIOS successor UEFI, and the Hardware Abstraction Layer (HAL). Other chapters cover industrial applications, verification, and tool environments. Tool introductions cover the application of tools in the ASIP software tool chain (i.e. Tensilica) and the generation of drivers and OS components from C-based languages. Applications focus on telecommunication and automotive systems.
None
This book constitutes the refereed proceedings of the 4th IFIP TC 10 International Embedded Systems Symposium, IESS 2013, held in Paderborn, Germany, in June 2013. The 22 full revised papers presented together with 8 short papers were carefully reviewed and selected from 42 submissions. The papers have been organized in the following topical sections: design methodologies; non-functional aspects of embedded systems; verification; performance analysis; real-time systems; embedded system applications; and real-time aspects in distributed systems. The book also includes a special chapter dedicated to the BMBF funded ARAMIS project on Automotive, Railway and Avionics Multicore Systems.
Embedded System Design: Modeling, Synthesis and Verification introduces a model-based approach to system level design. It presents modeling techniques for both computation and communication at different levels of abstraction, such as specification, transaction level and cycle-accurate level. It discusses synthesis methods for system level architectures, embedded software and hardware components. Using these methods, designers can develop applications with high level models, which are automatically translatable to low level implementations. This book, furthermore, describes simulation-based and formal verification methods that are essential for achieving design confidence. The book concludes ...