You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Haim Brezis has made significant contributions in the fields of partial differential equations and functional analysis, and this volume collects contributions by his former students and collaborators in honor of his 60th anniversary at a conference in Gaeta. It presents new developments in the theory of partial differential equations with emphasis on elliptic and parabolic problems.
In celebration of Haim Brezis's 60th birthday, a conference was held at the Ecole Polytechnique in Paris, with a program testifying to Brezis's wide-ranging influence on nonlinear analysis and partial differential equations. The articles in this volume are primarily from that conference. They present a rare view of the state of the art of many aspects of nonlinear PDEs, as well as describe new directions that are being opened up in this field. The articles, written by mathematicians at the center of current developments, provide somewhat more personal views of the important developments and challenges.
Current research and applications in nonlinear analysis influenced by Haim Brezis and Louis Nirenberg are presented in this book by leading mathematicians. Each contribution aims to broaden reader’s understanding of theories, methods, and techniques utilized to solve significant problems. Topics include: Sobolev Spaces Maximal monotone operators A theorem of Brezis-Nirenberg Operator-norm convergence of the Trotter product formula Elliptic operators with infinitely many variables Pseudo-and quasiconvexities for nonsmooth function Anisotropic surface measures Eulerian and Lagrangian variables Multiple periodic solutions of Lagrangian systems Porous medium equation Nondiscrete Lassonde-Revalski principle Graduate students and researchers in mathematics, physics, engineering, and economics will find this book a useful reference for new techniques and research areas. Haim Brezis and Louis Nirenberg’s fundamental research in nonlinear functional analysis and nonlinear partial differential equations along with their years of teaching and training students have had a notable impact in the field.
Preface.- Gottfried Anger: Direct and inverse problems in potential theory.- Viorel Barbu: Regularity results for sane differential equations associated with maximal monotone operators in Hilbert spaces.- Haim Brezis: Classes d'interpolation associées à un opérateur monotone et applications.- Siegfried Dnümmel: On inverse problems for k-dimensional potentials.- Jozef Ka?ur: Application of Rothe's method to nonlinear parabolic boundary value problems.- Josef Král: Potentials and removability of singularities.- Vladimir Lovicar: Theorem of Fréchet and asymptotically almost periodid solutions of.
"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational ma...
This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
This book presents a new front of research in conformal geometry, on sign-changing Yamabe-type problems and contact form geometry in particular. New ground is broken with the establishment of a Morse lemma at infinity for sign-changing Yamabe-type problems. This family of problems, thought to be out of reach a few years ago, becomes a family of problems which can be studied: the book lays the foundation for a program of research in this direction. In contact form geometry, a cousin of symplectic geometry, the authors prove a fundamental result of compactness in a variational problem on Legrendrian curves, which allows one to define a homology associated to a contact structure and a vector field of its kernel on a three-dimensional manifold. The homology is invariant under deformation of the contact form, and can be read on a sub-Morse complex of the Morse complex of the variational problem built with the periodic orbits of the Reeb vector-field. This book introduces, therefore, a practical tool in the field, and this homology becomes computable.