You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Written by an interdisciplinary team of chemists, biologists and engineers from one of the leading European centers for microsystem research, MIC in Lyngby, Denmark, this book introduces and discusses the different aspects of (bio)chemical microsystem development. Unlike other, far more voluminous and theoretical books on this topic, this is a concise, practical handbook, dealing with analytical applications, particularly in the life sciences. Topics include: * microfluidics * silicon micromachining * glass and polymer micromachining * packaging * analytical chemistry illustrated with examples taken mainly from ongoing research projects at MIC.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
"Papers presented at the First International Symposium on Science and Technology of Dielectrics in Emerging Fields, held from 27th April to 2nd May, 2003 in Paris, France"--Pref.
In the past ten years there has been a rapid growth of the research and application area known as Lab-on-a-Chip. After an initial focus on electrokinetic separation techniques on chip, the scope of the field has widened to include topics like microfluidics, DNA analysis, cell analysis, microreactors and mass spectrometer interfacing. As well as the analytical chemistry community, synthetic chemists, chemical engineers, biochemists and biomedical engineers are now also becoming more and more interested in using new micro- and nanotechnological techniques. This first Lab-on-a-Chip book contains a broad collection of papers on microtechnology, microfluidics, analytical methods and applications....
Conservation and Restoration of Glass is an in-depth guide to the materials and practices required for the care and preservation of glass objects. It provides thorough coverage of both theoretical and practical aspects of glass conservation. This new edition of Newton and Davison's original book, Conservation of Glass, includes sections on the nature of glass, the historical development and technology of glassmaking, and the deterioration of glass. Professional conservators will welcome the inclusion of recommendations for examination and documentation. Incorporating treatment of both excavated glass and historic and decorative glass, the book provides the knowledge required by conservators and restorers and is invaluable for anyone with glass objects in their care.
Electrochemical methods of chemical analysis have been widely used for many years, most especially the trusty pH electrode and conductivity meter, but also in the mass-manufactured glucose test strips which place electrochemical measurements into the hands of non-scientists. The purpose of this volume is to address advances that will enable new measurement strategies in the future. Surveying research and development advances based on new methods, materials and devices that achieve improved electroanalytical performances, this collection encompasses chip-based systems, through nanodomain approaches and soft interfaces. This book is a vital resource for graduate students and professional analytical chemists.
The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.
None
Special topic volume with invited peer-reviewed papers only