You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The present volume collects selected papers arising from lectures delivered by the authors at the School on Fuzzy Logic and Soft Computing held during the years 1996/97/98/99 and sponsored by the Salerno University. The authors contributing to this volume agreed with editors to write down, to enlarge and, in many cases, to rethink their original lectures, in order to offer to readership, a more compact presentation of the proposed topics. The aim of the volume is to offer a picture, as a job in progress, of the effort that is coming in founding and developing soft computing's techniques. The volume contains papers aimed to report on recent results containing genuinely logical aspects of fuzz...
The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.
In our new century, the theory of fuzzy sets and systems is in the core of "Soft Computing" and "Computational Intelligence" and has become a normal scientific theory in the fields of exact sciences and engineering and it is well on its way to becoming normal in the soft sciences as well. This book is a collection of the views of numerous scholars in different parts of the world who are involved in various research projects concerning fuzziness in science, technology, economic systems, social sciences, logics and philosophy. This volume demonstrates that there are many different views of the theory of fuzzy sets and systems and of their interpretation and applications in diverse areas of our cultural and social life.
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Łukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV –algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate students and researchers in the field of non-classical many-valued logics.
This volume celebrates the work of Petr Hájek on mathematical fuzzy logic and presents how his efforts have influenced prominent logicians who are continuing his work. The book opens with a discussion on Hájek's contribution to mathematical fuzzy logic and with a scientific biography of him, progresses to include two articles with a foundation flavour, that demonstrate some important aspects of Hájek's production, namely, a paper on the development of fuzzy sets and another paper on some fuzzy versions of set theory and arithmetic. Articles in the volume also focus on the treatment of vagueness, building connections between Hájek's favorite fuzzy logic and linguistic models of vagueness....
Many results in fuzzy logic depend on the mathematical structure the truth value set obeys. In this textbook the algebraic foundations of many-valued and fuzzy reasoning are introduced. The book is self-contained, thus no previous knowledge in algebra or in logic is required. It contains 134 exercises with complete answers, and can therefore be used as teaching material at universities for both undergraduated and post-graduated courses. Chapter 1 starts from such basic concepts as order, lattice, equivalence and residuated lattice. It contains a full section on BL-algebras. Chapter 2 concerns MV-algebra and its basic properties. Chapter 3 applies these mathematical results on Lukasiewicz-Pavelka style fuzzy logic, which is studied in details; besides semantics, syntax and completeness of this logic, a lot of examples are given. Chapter 4 shows the connection between fuzzy relations, approximate reasoning and fuzzy IF-THEN rules to residuated lattices.
None
None