You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.
The book presents a significant expansion in depth and breadth of the previous edition. It includes substantially more numerical illustrations and copious supporting MATLAB code that the reader can use to replicate illustrations or build his or her own. The code is deliberately written to be as simple as possible and easy to edit. The book is an excellent starting point for any researcher to gain a solid grounding in MPC concepts and algorithms before moving into application or more advanced research topics. Sample problems for readers are embedded throughout the chapters, and in-text questions are designed for readers to demonstrate an understanding of concepts through numerical simulation.
In this thesis, we study model predictive control (MPC) schemes for control tasks which go beyond the classical objective of setpoint stabilization. In particular, we consider two classes of such control problems, namely distributed MPC for cooperative control in networks of multiple interconnected systems, and economic MPC, where the main focus is on the optimization of some general performance criterion which is possibly related to the economics of a system. The contributions of this thesis are to analyze various systems theoretic properties occurring in these type of control problems, and to develop distributed and economic MPC schemes with certain desired (closed-loop) guarantees. To be ...
In this thesis, we introduce the novel concept of relaxed barrier function based model predictive control and present a comprehensive theoretical and algorithmic framework for the design, analysis, and implementation of relaxed barrier function based MPC approaches. Instead of treating the underlying optimization as an idealized static map, a key motive of the MPC results and algorithms presented in this thesis is to study the interconnected dynamics of controlled plant and iterative optimization algorithm in an integrated barrier function based framework and to analyze the resulting overall closed-loop system both from a systems theoretic and algorithmic perspective. One of the presented ma...
A three-week workshop on Large-Scale Optimization was held at the IMA from July 10 to July 28, 1995 as part of its summer program. These workshops brought together some of the world's leading experts in the areas of optimization, inverse problems, optimal design, optimal control and molecular structures. The content of these volumes represent a majority of the presentations at the three workshops. The presentations, and the subsequent articles published here are intended to be useful and accessible to both the mathematical programmers and those working in the applications. Perhaps somewhat optimistically, the hope is that the workshops and the proceedings will also initiate some long-term research projects and impart to new researchers the excitement, vitality and importance of this kind of cooperation to the applications and to applied mathematics.
Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.
Advances in Control contains keynote contributions and tutorial material from the fifth European Control Conference, held in Germany in September 1999. The topics covered are of particular relevance to all academics and practitioners in the field of modern control engineering. These include: - Modern Control Theory - Fault Tolerant Control Systems - Linear Descriptor Systems - Generic Robust Control Design - Verification of Hybrid Systems - New Industrial Perspectives - Nonlinear System Identification - Multi-Modal Telepresence Systems - Advanced Strategies for Process Control - Nonlinear Predictive Control - Logic Controllers of Continuous Plants - Two-dimensional Linear Systems. This important collection of work is introduced by Professor P.M. Frank who has almost forty years of experience in the field of automatic control. State-of-the-art research, expert opinions and future developments in control theory and its industrial applications, combine to make this an essential volume for all those involved in control engineering.