You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter’s response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the...
This unique and encyclopedic reference work describes the evolution of the physics of modern shock wave and detonation from the earlier and classical percussion. The history of this complex process is first reviewed in a general survey. Subsequently, the subject is treated in more detail and the book is richly illustrated in the form of a picture gallery. This book is ideal for everyone professionally interested in shock wave phenomena.
All papers were peer-reviewed. Shock wave compression represents a unique approach to understanding condensed matter response to extreme conditions and to provide insight into nonlinear wave propagation. This volume embodies the most recent research on shock compression of condensed matter, and includes 349 papers on topics including equation of state, phase transitions, chemical reactions, warm dense matter, fracture, geophysics and planetary science, energetic materials, optical studies, materials modeling, experimental developments, and biological applications of shock waves.
Part One and Part Two
None
Two volumes contain 350 papers presented at the 13th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter (Portland, Oregon, July 2003). One of the three plenary lectures was given by James Asay (Institute for Shock Physics, Washington State U., Pullman, Washington) on wave structure studies in condensed matter physics. The papers in v.1 address nonenergetic materials; energetic materials; phase transitions; the modeling, simulation, theory, and molecular dynamics modeling of nonreactive and reactive materials; spall, fracture, and fragmentation; constitutive and microstructural properties of metals; mechanical properties of polymers and composi...